login
A342004
a(n) = 1 if the maximal exponent in the prime factorization of the arithmetic derivative of n (A003415) is less than the maximal exponent in n, otherwise 0. a(1) = 1 by convention.
5
1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0
OFFSET
1
FORMULA
a(n) = [A328311(n) == 0], where [ ] is the Iverson bracket.
For n > 1, a(n) = 1 if A342003(n) < A051903(n), otherwise 0.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A328311(n) = if(n<=1, 0, 1+(A051903(A003415(n)) - A051903(n)));
A342004(n) = (0==A328311(n));
CROSSREFS
Characteristic function of A328320.
Sequence in context: A342877 A140074 A351957 * A284881 A374048 A090174
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 01 2021
STATUS
approved