login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342003
Maximal exponent in the prime factorization of the arithmetic derivative of n: a(n) = A051903(A003415(n)).
3
0, 0, 2, 0, 1, 0, 2, 1, 1, 0, 4, 0, 2, 3, 5, 0, 1, 0, 3, 1, 1, 0, 2, 1, 1, 3, 5, 0, 1, 0, 4, 1, 1, 2, 2, 0, 1, 4, 2, 0, 1, 0, 4, 1, 2, 0, 4, 1, 2, 2, 3, 0, 4, 4, 2, 1, 1, 0, 2, 0, 1, 1, 6, 2, 1, 0, 3, 1, 1, 0, 2, 0, 1, 1, 4, 2, 1, 0, 4, 3, 1, 0, 2, 1, 2, 5, 2, 0, 1, 2, 5, 1, 2, 3, 4, 0, 1, 2, 2, 0, 1, 0, 2, 1
OFFSET
2,3
LINKS
FORMULA
a(n) = A051903(A003415(n)).
a(n) = A051903(n) + A328310(n).
a(n) = 1 iff A341994(n) = 1.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
CROSSREFS
Cf. A000040 (indices of zeros), A328234 (of ones), A328393 (of the terms < 2).
Sequence in context: A358133 A363878 A086372 * A339737 A364916 A365923
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 01 2021
STATUS
approved