login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339737
Triangle read by rows where T(n,k) is the number of integer partitions of n with greatest gap k.
8
1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 1, 2, 2, 1, 1, 0, 5, 1, 3, 2, 2, 1, 1, 0, 6, 2, 3, 4, 3, 2, 1, 1, 0, 8, 2, 4, 5, 4, 3, 2, 1, 1, 0, 10, 2, 5, 7, 6, 5, 3, 2, 1, 1, 0, 12, 3, 6, 8, 9, 6, 5, 3, 2, 1, 1, 0, 15, 3, 8, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0
OFFSET
0,7
COMMENTS
We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
George E. Andrews and David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
Brian Hopkins, James A. Sellers, and Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020.
EXAMPLE
Triangle begins:
1
1 0
1 1 0
2 0 1 0
2 1 1 1 0
3 1 1 1 1 0
4 1 2 2 1 1 0
5 1 3 2 2 1 1 0
6 2 3 4 3 2 1 1 0
8 2 4 5 4 3 2 1 1 0
10 2 5 7 6 5 3 2 1 1 0
12 3 6 8 9 6 5 3 2 1 1 0
15 3 8 11 11 10 7 5 3 2 1 1 0
18 4 9 13 15 13 10 7 5 3 2 1 1 0
22 5 10 17 19 18 14 11 7 5 3 2 1 1 0
27 5 13 20 24 23 20 14 11 7 5 3 2 1 1 0
For example, row n = 9 counts the following partitions:
(3321) (432) (333) (54) (522) (63) (72) (81) (9)
(22221) (3222) (4311) (441) (531) (621) (711)
(32211) (33111) (4221) (5211) (6111)
(222111) (3111111) (42111) (51111)
(321111) (411111)
(2211111)
(21111111)
(111111111)
MATHEMATICA
maxgap[q_]:=Max@@Complement[Range[0, If[q=={}, 0, Max[q]]], q];
Table[Length[Select[IntegerPartitions[n], maxgap[#]==k&]], {n, 0, 15}, {k, 0, n}]
PROG
(PARI)
S(n, k)={if(k>n, O(x*x^n), x^k*(S(n-k, k+1) + 1)/(1 - x^k))}
ColGf(k, n) = {(k==0) + S(n, k+1)/prod(j=1, k-1, 1 - x^j + O(x^max(1, n-k)))}
A(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))}
{ my(M=A(10)); for(i=1, #M, print(M[i, 1..i])) } \\ Andrew Howroyd, Jan 13 2024
CROSSREFS
Column k = 0 is A000009.
Row sums are A000041.
Central diagonal is A000041.
Column k = 1 is A087897.
The version for least gap is A264401, with Heinz number encoding A257993.
The version for greatest difference is A286469 or A286470.
An encoding (of greatest gap) using Heinz numbers is A339662.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A048004 counts compositions by greatest part.
A056239 adds up prime indices, row sums of A112798.
A064391 is the version for crank.
A064428 counts partitions of nonnegative crank.
A073491 list numbers with gap-free prime indices.
A107428 counts gap-free compositions.
A238709/A238710 counts partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.
Sequence in context: A363878 A086372 A342003 * A364916 A365923 A089650
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Apr 20 2021
EXTENSIONS
Offset corrected by Andrew Howroyd, Jan 13 2024
STATUS
approved