OFFSET
1,4
COMMENTS
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..400
EXAMPLE
row 2: 1
row 3: 1 ... 1
row 4: 3 ... 0 ... 1
row 5: 4 ... 1 ... 0 ... 1
row 6: 7 ... 1 ... 1 ... 0 ... 1
row 7: 10 .. 2 ... 0 ... 1 ... 0 ... 1
row 8: 16 .. 2 ... 1 ... 0 ... 1 ... 0 ... 1
row 9: 22 .. 3 ... 1 ... 1 ... 0 ... 1 ... 0 ... 1
Let m = min(x(j) - x(j-1)); then for row 5, the 4 partitions with m = 0 are 311, 221, 2111, 11111; the 1 partition with m = 1 is 32, and the 1 partition with m = 3 is 41.
MATHEMATICA
z = 25; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; m[n_, k_] := m[n, k] = Min[-Differences[p[n, k]]]; c[n_] := Table[m[n, h], {h, 1, PartitionsP[n]}]; v = Table[Count[c[n], h], {n, 2, z}, {h, 0, n - 2}]; Flatten[v]
TableForm[v]
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 03 2014
STATUS
approved