login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238709
Triangular array: t(n,k) = number of partitions p = {x(1) >= x(2) >= ... >= x(k)} such that min(x(j) - x(j-1)) = k.
13
1, 1, 1, 3, 0, 1, 4, 1, 0, 1, 7, 1, 1, 0, 1, 10, 2, 0, 1, 0, 1, 16, 2, 1, 0, 1, 0, 1, 22, 3, 1, 1, 0, 1, 0, 1, 32, 4, 2, 0, 1, 0, 1, 0, 1, 44, 5, 2, 1, 0, 1, 0, 1, 0, 1, 62, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 83, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 113, 10, 4, 2, 1
OFFSET
1,4
COMMENTS
The first two columns are essentially A047967 and A238708. Counting the top row as row 2, the sum of numbers in row n is A000041(n) - 1.
LINKS
EXAMPLE
row 2: 1
row 3: 1 ... 1
row 4: 3 ... 0 ... 1
row 5: 4 ... 1 ... 0 ... 1
row 6: 7 ... 1 ... 1 ... 0 ... 1
row 7: 10 .. 2 ... 0 ... 1 ... 0 ... 1
row 8: 16 .. 2 ... 1 ... 0 ... 1 ... 0 ... 1
row 9: 22 .. 3 ... 1 ... 1 ... 0 ... 1 ... 0 ... 1
Let m = min(x(j) - x(j-1)); then for row 5, the 4 partitions with m = 0 are 311, 221, 2111, 11111; the 1 partition with m = 1 is 32, and the 1 partition with m = 3 is 41.
MATHEMATICA
z = 25; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; m[n_, k_] := m[n, k] = Min[-Differences[p[n, k]]]; c[n_] := Table[m[n, h], {h, 1, PartitionsP[n]}]; v = Table[Count[c[n], h], {n, 2, z}, {h, 0, n - 2}]; Flatten[v]
TableForm[v]
CROSSREFS
Sequence in context: A307451 A247629 A178116 * A245120 A226912 A177330
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Mar 03 2014
STATUS
approved