The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238707 Number T(n,k) of ballot sequences of length n having difference k between the multiplicities of the smallest and the largest value; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 13
 1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 4, 3, 3, 0, 0, 2, 14, 6, 4, 0, 0, 12, 14, 35, 10, 5, 0, 0, 2, 69, 71, 69, 15, 6, 0, 0, 30, 97, 295, 195, 119, 21, 7, 0, 0, 44, 251, 751, 929, 421, 188, 28, 8, 0, 0, 86, 671, 2326, 3044, 2254, 791, 279, 36, 9, 0, 0, 2, 1847, 6524, 11824, 8999, 4696, 1354, 395, 45, 10, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also the number of standard Young tableaux (SYT) with n cells having difference k between the lengths of the first and the last row. LINKS Joerg Arndt and Alois P. Heinz, Rows n = 0..67, flattened Wikipedia, Young tableau EXAMPLE For n=4 the 10 ballot sequences of length 4 and differences between the multiplicities of the smallest and the largest value are: [1, 2, 3, 4]  ->  1-1 = 0, [1, 1, 2, 2]  ->  2-2 = 0, [1, 2, 1, 2]  ->  2-2 = 0, [1, 1, 1, 1]  ->  4-4 = 0, [1, 1, 2, 3]  ->  2-1 = 1, [1, 2, 1, 3]  ->  2-1 = 1, [1, 2, 3, 1]  ->  2-1 = 1, [1, 1, 1, 2]  ->  3-1 = 2, [1, 1, 2, 1]  ->  3-1 = 2, [1, 2, 1, 1]  ->  3-1 = 2, thus row 4 = [4, 3, 3, 0, 0]. The 10 tableaux with 4 cells sorted by the difference between the lengths of the first and the last row are: :[1] [1 2] [1 3] [1 2 3 4]:[1 2] [1 3] [1 4]:[1 2 3] [1 2 4] [1 3 4]: :[2] [3 4] [2 4]          :[3]   [2]   [2]  :[4]     [3]     [2]    : :[3]                      :[4]   [4]   [3]  :                       : :[4]                      :                 :                       : : -----------0----------- : -------1------- : ----------2---------- : Triangle T(n,k) begins: 00:   1; 01:   1,   0; 02:   2,   0,    0; 03:   2,   2,    0,    0; 04:   4,   3,    3,    0,    0; 05:   2,  14,    6,    4,    0,   0; 06:  12,  14,   35,   10,    5,   0,   0; 07:   2,  69,   71,   69,   15,   6,   0,  0; 08:  30,  97,  295,  195,  119,  21,   7,  0,  0; 09:  44, 251,  751,  929,  421, 188,  28,  8,  0,  0; 10:  86, 671, 2326, 3044, 2254, 791, 279, 36,  9,  0,  0; MAPLE b:= proc(n, l) option remember; `if`(n<1, x^(l[1]-l[-1]),       expand(b(n-1, [l[], 1])+add(`if`(i=1 or l[i-1]>l[i],       b(n-1, subsop(i=l[i]+1, l)), 0), i=1..nops(l))))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n-1, [1])): seq(T(n), n=0..12); # second Maple program (counting SYT): h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+        add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)     end: g:= proc(n, i, l) `if`(n=0 or i=1, (p->h(p)*x^(`if`(p=[], 0, p[1]-       p[-1])))([l[], 1\$n]), add(g(n-i*j, i-1, [l[], i\$j]), j=0..n/i))     end: T:= n->(p-> seq(coeff(p, x, i), i=0..n))(g(n, n, [])): seq(T(n), n=0..12); MATHEMATICA b[n_, l_List] := b[n, l] = If[n<1, x^(l[[1]] - l[[-1]]), Expand[b[n-1, Append[l, 1]] + Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, {1}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 07 2015, translated from Maple *) CROSSREFS Columns k=0-10 give: A067228, A244295, A244296, A244297, A244298, A244299, A244300, A244301, A244302, A244303, A244304. T(2n,n) gives A244305. Row sums give A000085. Sequence in context: A137676 A333755 A238130 * A181111 A353856 A216800 Adjacent sequences:  A238704 A238705 A238706 * A238708 A238709 A238710 KEYWORD nonn,tabl AUTHOR Joerg Arndt and Alois P. Heinz, Mar 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 21:08 EDT 2022. Contains 356026 sequences. (Running on oeis4.)