login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244299
Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 5.
2
6, 21, 188, 791, 4696, 21614, 109745, 513421, 2557358, 11885545, 58291639, 275421640, 1342532532, 6411950652, 31310737486, 151220406569, 742729520457, 3625802212441, 17956348335989, 88575381634494, 442565032597013, 2207206278880826, 11138577085071310
OFFSET
7,1
COMMENTS
Also the number of ballot sequences of length n such that the multiplicities of the largest and the smallest value differ by 5.
LINKS
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and
l[1]-i=5, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0),
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> g(n$2, []):
seq(a(n), n=7..35);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, l[[i]]}], {i, n}]];
g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} && l[[1]] - i == 5, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]]];
a[n_] := g[n, n, {}];
Table[a[n], {n, 7, 35}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)
CROSSREFS
Column k=5 of A238707.
Sequence in context: A179768 A131960 A372137 * A143049 A213680 A164643
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 25 2014
STATUS
approved