The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244298 Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 4. 2
 5, 15, 119, 421, 2254, 8999, 40349, 166817, 737829, 3008774, 13186593, 54944783, 238422808, 1010671048, 4395831546, 18821162274, 82799233661, 359711480525, 1599420076729, 7030074945271, 31626819884986, 141486845119777, 646988113794544, 2940338763342920 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,1 COMMENTS Also the number of ballot sequences of length n such that the multiplicities of the largest and the smallest value differ by 4. LINKS Alois P. Heinz, Table of n, a(n) for n = 6..100 MAPLE h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+     add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and       l[1]-i=4, `if`(irem(n, i, 'j')=0, h([l[], i\$j]), 0),       add(g(n-i*j, i-1, [l[], i\$j]), j=0..n/i)))     end: a:= n-> g(n\$2, []): seq(a(n), n=6..35); MATHEMATICA h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, l[[i]]}], {i, n}]]; g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} && l[[1]] - i == 4, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 6, 35}] (* Jean-François Alcover, Aug 28 2021, after Maple code *) CROSSREFS Column k=4 of A238707. Sequence in context: A220825 A303230 A173736 * A050542 A091096 A116957 Adjacent sequences:  A244295 A244296 A244297 * A244299 A244300 A244301 KEYWORD nonn AUTHOR Joerg Arndt and Alois P. Heinz, Jun 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 23:52 EDT 2022. Contains 356077 sequences. (Running on oeis4.)