login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244296
Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 2.
2
3, 6, 35, 71, 295, 751, 2326, 6524, 22309, 55992, 190282, 577410, 1951421, 5414977, 19405654, 64615030, 238446543, 726141375, 2682369977, 9475513873, 41043824531, 138540753071, 524631248766, 1902172512592, 8404692901429, 35025078519164, 148160349275671
OFFSET
4,1
COMMENTS
Also the number of ballot sequences of length n such that the multiplicities of the largest and the smallest value differ by 2.
LINKS
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and
l[1]-i=2, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0),
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> g(n, n, []):
seq(a(n), n=4..35);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j +
Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, l[[i]]}], {i, n}]];
g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} &&
l[[1]] - i == 2, If[j = Quotient[n, i]; Mod[n, i] == 0,
h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1,
Join [l, Table[i, {j}]]], {j, 0, n/i}]]]];
a[n_] := g[n, n, {}];
Table[a[n], {n, 4, 35}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)
CROSSREFS
Column k=2 of A238707.
Sequence in context: A134748 A068904 A309774 * A143046 A246069 A228279
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 25 2014
STATUS
approved