OFFSET
1,4
COMMENTS
Corresponds to r_2(k) in the Rosenberg paper.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..450
Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
FORMULA
a(n) = sum(n! / (m! * p^m * (p-1)), n = p * m, p prime). (corrected by Robert Israel, Aug 27 2014)
MAPLE
a:= n -> add(n!/((n/p)! * p^(n/p) * (p-1)), p = numtheory:-factorset(n)):
seq(a(n), n=1..100); # Robert Israel, Aug 27 2014
MATHEMATICA
a[n_] := If[n == 1, 0, Sum[n!/((n/p)! p^(n/p) (p-1)), {p, FactorInteger[n][[All, 1]]}]]; Array[a, 100] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Aug 25 2014
STATUS
approved