login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246069
Number of maximal classes determined by permutations.
2
0, 1, 1, 3, 6, 35, 120, 105, 1120, 19089, 362880, 133595, 39916800, 148397535, 458313856, 2027025, 1307674368000, 6133352225, 355687428096000, 40549021532019, 4139906028544000, 464463124401214575, 51090942171709440000, 1173011341727225
OFFSET
1,4
COMMENTS
Corresponds to r_2(k) in the Rosenberg paper.
LINKS
Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
FORMULA
a(n) = sum(n! / (m! * p^m * (p-1)), n = p * m, p prime). (corrected by Robert Israel, Aug 27 2014)
MAPLE
a:= n -> add(n!/((n/p)! * p^(n/p) * (p-1)), p = numtheory:-factorset(n)):
seq(a(n), n=1..100); # Robert Israel, Aug 27 2014
MATHEMATICA
a[n_] := If[n == 1, 0, Sum[n!/((n/p)! p^(n/p) (p-1)), {p, FactorInteger[n][[All, 1]]}]]; Array[a, 100] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)
CROSSREFS
Cf. A002826.
Sequence in context: A309774 A244296 A143046 * A228279 A009197 A205336
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Aug 25 2014
STATUS
approved