login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of maximal classes determined by permutations.
2

%I #26 Mar 22 2019 07:58:36

%S 0,1,1,3,6,35,120,105,1120,19089,362880,133595,39916800,148397535,

%T 458313856,2027025,1307674368000,6133352225,355687428096000,

%U 40549021532019,4139906028544000,464463124401214575,51090942171709440000,1173011341727225

%N Number of maximal classes determined by permutations.

%C Corresponds to r_2(k) in the Rosenberg paper.

%H Alois P. Heinz, <a href="/A246069/b246069.txt">Table of n, a(n) for n = 1..450</a>

%H Ivo Rosenberg, <a href="http://dx.doi.org/10.1016/0097-3165(73)90058-7">The number of maximal closed classes in the set of functions over a finite domain</a>, J. Combinatorial Theory Ser. A 14 (1973), 1-7.

%H Ivo Rosenberg and N. J. A. Sloane, <a href="/A002824/a002824_1.pdf">Correspondence, 1971</a>

%F a(n) = sum(n! / (m! * p^m * (p-1)), n = p * m, p prime). (corrected by _Robert Israel_, Aug 27 2014)

%p a:= n -> add(n!/((n/p)! * p^(n/p) * (p-1)), p = numtheory:-factorset(n)):

%p seq(a(n), n=1..100); # _Robert Israel_, Aug 27 2014

%t a[n_] := If[n == 1, 0, Sum[n!/((n/p)! p^(n/p) (p-1)), {p, FactorInteger[n][[All, 1]]}]]; Array[a, 100] (* _Jean-François Alcover_, Mar 22 2019, after _Robert Israel_ *)

%Y Cf. A002826.

%K nonn

%O 1,4

%A _Sean A. Irvine_, Aug 25 2014