|
|
A068904
|
|
a(n) = binomial(sigma(n),tau(n)), where sigma(n) is the sum and tau(n) the number of divisors of n (A000203, A000005).
|
|
4
|
|
|
1, 3, 6, 35, 15, 495, 28, 1365, 286, 3060, 66, 376740, 91, 10626, 10626, 169911, 153, 3262623, 190, 5245786, 35960, 58905, 276, 2558620845, 4495, 111930, 91390, 32468436, 435, 11969016345, 496, 67945521, 194580, 316251, 194580, 783768050065, 703, 487635
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1024 terms from Antti Karttunen)
|
|
MAPLE
|
with(numtheory); P:=proc(i) local a, n; for n from 1 by 1 to i do a:=binomial(sigma(n), tau(n)); print(a); od; end: P(20); # Paolo P. Lava, Dec 12 2008
|
|
MATHEMATICA
|
Table[Binomial[DivisorSigma[1, n], DivisorSigma[0, n]], {n, 50}] (* Carl Najafi, Oct 10 2011 *)
|
|
PROG
|
(PARI) a(n)=binomial(sigma(n), numdiv(n)) \\ Charles R Greathouse IV, Feb 19 2013
|
|
CROSSREFS
|
Cf. A068905, A068903, A204292.
Sequence in context: A249875 A308557 A134748 * A309774 A244296 A143046
Adjacent sequences: A068901 A068902 A068903 * A068905 A068906 A068907
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Mar 06 2002
|
|
EXTENSIONS
|
More terms from Carl Najafi, Oct 10 2011
|
|
STATUS
|
approved
|
|
|
|