login
A068907
Number of partitions of n modulo 3.
10
1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 0, 2, 2, 2, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 2, 0, 1, 1, 0, 2, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 1, 2, 2, 2, 0, 2, 0, 0, 1, 1, 2, 0, 2, 1, 2, 2, 0, 1, 1, 2, 2, 2, 1, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0
OFFSET
0,3
COMMENTS
Of the partitions of numbers from 1 to 100000: 33344 are 0, 33193 are 1 and 33463 are 2 modulo 3.
FORMULA
a(n) = A010872(A000041(n)) = A068906(3, n)
a(n) = Pm(n,1) with Pm(n,k) = if k<n then (Pm(n-k,k) + Pm(n,k+1)) mod 3 else 0^(n*(k-n)). - Reinhard Zumkeller, Jun 09 2009
MATHEMATICA
Table[ Mod[ PartitionsP@ n, 3], {n, 105}] (* Robert G. Wilson v, Mar 25 2011 *)
PROG
(PARI) a(n) = numbpart(n) % 3; \\ Michel Marcus, Jul 14 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Mar 05 2002
STATUS
approved