login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127543 Triangle T(n,k), 0<=k<=n, read by rows given by :[ -1,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. 4
1, -1, 1, 0, -1, 1, -1, 1, -1, 1, -2, 0, 2, -1, 1, -6, 2, 1, 3, -1, 1, -18, 5, 7, 2, 4, -1, 1, -57, 17, 19, 13, 3, 5, -1, 1, -186, 56, 64, 36, 20, 4, 6, -1, 1, -622, 190, 212, 124, 56, 28, 5, 7, -1, 1, -2120, 654, 722, 416, 198, 79, 37, 6, 8, -1, 1, -7338, 2282, 2494, 1434, 673, 287, 105, 47, 7, 9, -1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Riordan array (2/(3-sqrt(1-4*x)), (1-sqrt(1-4*x))/(3-sqrt(1-4*x))). - Philippe Deléham, Jan 27 2014

LINKS

G. C. Greubel, Rows n = 0..50 of the triangle, flattened

FORMULA

T(n,k) = A065600(n-1,k-1) - A065600(n-1,k).

Sum_{k=0..n} T(n,k)*x^k = A127053(n), A126985(n), A127016(n), A127017(n), A126987(n), A126986(n), A126982(n), A126984(n), A126983(n), A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for n= -8,-7,...,8,9 respectively.

Sum_{j>=0} T(n,j)*A007318(j,k) = A106566(n,k).

Sum_{j>=0} T(n,j)*A038207(j,k) = A039599(n,k).

Sum_{j>=0} T(n,j)*A027465(j,k) = A116395(n,k).

EXAMPLE

Triangle begins:

1;

-1, 1;

0, -1, 1;

-1, 1, -1, 1;

-2, 0, 2, -1, 1;

-6, 2, 1, 3, -1, 1;

-18, 5, 7, 2, 4, -1, 1;

-57, 17, 19, 13, 3, 5, -1, 1;

MATHEMATICA

A065600[n_, k_]:= If[k==n, 1, Sum[j*Binomial[k+j, j]*Binomial[2*(n-k-j), n-k]/(n-k-j), {j, 0, Floor[(n-k)/2]}]];

A127543[n_, k_]:= A065600[n-1, k-1] - A065600[n-1, k];

Table[A127543[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 17 2021 *)

PROG

(Sage)

def A065600(n, k): return 1 if (k==n) else sum( j*binomial(k+j, j)*binomial(2*(n-k-j), n-k)/(n-k-j) for j in (0..(n-k)//2) )

def A127543(n, k): return A065600(n-1, k-1) - A065600(n-1, k)

flatten([[A127543(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 17 2021

CROSSREFS

Sequence in context: A112466 A166348 A294658 * A353237 A280830 A068907

Adjacent sequences: A127540 A127541 A127542 * A127544 A127545 A127546

KEYWORD

sign,tabl

AUTHOR

Philippe Deléham, Apr 01 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 13:44 EST 2022. Contains 358510 sequences. (Running on oeis4.)