login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127543
Triangle T(n,k), 0<=k<=n, read by rows given by :[ -1,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
4
1, -1, 1, 0, -1, 1, -1, 1, -1, 1, -2, 0, 2, -1, 1, -6, 2, 1, 3, -1, 1, -18, 5, 7, 2, 4, -1, 1, -57, 17, 19, 13, 3, 5, -1, 1, -186, 56, 64, 36, 20, 4, 6, -1, 1, -622, 190, 212, 124, 56, 28, 5, 7, -1, 1, -2120, 654, 722, 416, 198, 79, 37, 6, 8, -1, 1, -7338, 2282, 2494, 1434, 673, 287, 105, 47, 7, 9, -1, 1
OFFSET
0,11
COMMENTS
Riordan array (2/(3-sqrt(1-4*x)), (1-sqrt(1-4*x))/(3-sqrt(1-4*x))). - Philippe Deléham, Jan 27 2014
FORMULA
T(n,k) = A065600(n-1,k-1) - A065600(n-1,k).
Sum_{k=0..n} T(n,k)*x^k = A127053(n), A126985(n), A127016(n), A127017(n), A126987(n), A126986(n), A126982(n), A126984(n), A126983(n), A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for n= -8,-7,...,8,9 respectively.
Sum_{j>=0} T(n,j)*A007318(j,k) = A106566(n,k).
Sum_{j>=0} T(n,j)*A038207(j,k) = A039599(n,k).
Sum_{j>=0} T(n,j)*A027465(j,k) = A116395(n,k).
EXAMPLE
Triangle begins:
1;
-1, 1;
0, -1, 1;
-1, 1, -1, 1;
-2, 0, 2, -1, 1;
-6, 2, 1, 3, -1, 1;
-18, 5, 7, 2, 4, -1, 1;
-57, 17, 19, 13, 3, 5, -1, 1;
MATHEMATICA
A065600[n_, k_]:= If[k==n, 1, Sum[j*Binomial[k+j, j]*Binomial[2*(n-k-j), n-k]/(n-k-j), {j, 0, Floor[(n-k)/2]}]];
A127543[n_, k_]:= A065600[n-1, k-1] - A065600[n-1, k];
Table[A127543[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 17 2021 *)
PROG
(Sage)
def A065600(n, k): return 1 if (k==n) else sum( j*binomial(k+j, j)*binomial(2*(n-k-j), n-k)/(n-k-j) for j in (0..(n-k)//2) )
def A127543(n, k): return A065600(n-1, k-1) - A065600(n-1, k)
flatten([[A127543(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 17 2021
CROSSREFS
Sequence in context: A112466 A166348 A294658 * A353237 A280830 A068907
KEYWORD
sign,tabl
AUTHOR
Philippe Deléham, Apr 01 2007
STATUS
approved