The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126986 Expansion of 1/(1+4*x*c(x)), c(x) the g.f. of Catalan numbers A000108. 6
 1, -4, 12, -40, 124, -408, 1272, -4176, 13020, -42808, 133096, -439344, 1358872, -4514800, 13853040, -46469280, 140945820, -479312760, 1430085000, -4958382960, 14453014920, -51500944080, 145230007440, -537922074720, 1446902948184, -5662012752048, 14228883685392 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is (-4)^n. For n>=37, all terms are negative. - Vaclav Kotesovec, May 30 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k=0..n} A039599(n,k)*(-5)^k. G.f.: 1/(3 - 2*sqrt(1-4*x)). - G. C. Greubel, May 29 2019 a(n) ~ -4^n / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 30 2019 MAPLE c:=(1-sqrt(1-4*x))/2/x: ser:=series(1/(1+4*x*c), x=0, 30): seq(coeff(ser, x, n), n=0..27); # Emeric Deutsch, Mar 23 2007 MATHEMATICA CoefficientList[Series[1/(3-2*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 29 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec(1/(3-2*sqrt(1-4*x))) \\ G. C. Greubel, May 29 2019 (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(3 - 2*Sqrt(1-4*x)) )); // G. C. Greubel, May 29 2019 (Sage) (1/(3-2*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 29 2019 CROSSREFS Sequence in context: A335806 A058353 A104525 * A341990 A090576 A152174 Adjacent sequences: A126983 A126984 A126985 * A126987 A126988 A126989 KEYWORD sign AUTHOR Philippe Deléham, Mar 21 2007 EXTENSIONS More terms from Emeric Deutsch, Mar 23 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 15:58 EDT 2024. Contains 372800 sequences. (Running on oeis4.)