login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341990
a(n) is the number of primitive solutions to the inverse Pythagorean equation 1/x^2 + 1/y^2 = 1/z^2 such that x <= y and x + y + z <= 10^n.
0
0, 1, 4, 12, 40, 128, 402, 1278, 4040, 12776, 40417, 127803, 404136, 1277995, 4041401, 12779996, 40413886, 127799963
OFFSET
1,3
FORMULA
It can be shown that all the primitive solutions are generated from the following parametric form: x = 2*a*b*(a^2+b^2), y = a^4-b^4, z = 2*a*b*(a^2-b^2), where gcd(a, b) = 1 and a + b is odd.
Limit_{n -> oo} a(n)/10^(n/2) = (4/Pi^2)*Integral_{x=sqrt(2)-1..1} 1/sqrt(1+4*x-x^4) ~ 0.1277999513464289283641211182341081978805...
EXAMPLE
For n = 3, the solutions are (20, 15, 12), (156, 65, 60), (136, 255, 120), (600, 175, 168). So a(3) = 4.
MATHEMATICA
a[n_] := Module[{m, l, a, b, s, a2, b2, x, y, z, cnt}, m = 10^n; s = 0; l = 3 * Floor[m^0.25]; cnt = 0; For[a = 1, a <= l, a++, a2 = a * a; For[b = 1, b < a, b++, If[GCD[a, b] == 1 && Mod[a + b, 2] == 1, b2 = b * b; x = 2 * a * b * (a2 + b2); y = a2 * a2 - b2 * b2; z = 2 * a * b * (a2 - b2); If[x + y + z > m, Continue[]]; cnt += 1]; ]]; cnt];
PROG
(Python)
from math import gcd
def fourth_root(n):
u, s = n, n + 1
while u < s:
s = u
t = 3 * s + n // (s ** 3)
u = t // 4
return s
def a(n):
N = 10 ** n
L = fourth_root(N) * 3
cnt = 0
for a in range(1, L + 1):
a2 = a * a
for b in range(1, a):
if (a + b) % 2 == 1 and gcd(a, b) == 1:
b2 = b * b
v = (4 * a * b + a2) * a2 - b2 * b2
if v > N:
continue
cnt += 1
return cnt
(PARI) a(n) = {my(lim = 3*sqrtnint(10^n, 4), nb = 0); for (x=1, lim, for (y=1, x, if (((x+y) % 2) && (gcd(x, y) == 1), if (2*x*y*(x^2 + y^2) + x^4 - y^4 + 2*x*y*(x^2 - y^2) <= 10^n, nb++); ); ); ); nb; } \\ Michel Marcus, Mar 25 2021
CROSSREFS
Sequence in context: A058353 A104525 A126986 * A090576 A152174 A087206
KEYWORD
nonn,more,changed
AUTHOR
Asif Ahmed, Feb 25 2021
STATUS
approved