login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127546
a(n) = F(n)^2 + F(n+1)^2 + F(n+2)^2, where F(n) denotes the n-th Fibonacci number.
4
2, 6, 14, 38, 98, 258, 674, 1766, 4622, 12102, 31682, 82946, 217154, 568518, 1488398, 3896678, 10201634, 26708226, 69923042, 183060902, 479259662, 1254718086, 3284894594, 8599965698, 22515002498, 58945041798, 154320122894, 404015326886, 1057725857762
OFFSET
0,1
COMMENTS
The following conjecture, if not already well-known, is probably easy to prove: a(n) = 3a(n-1)-a(n-2)-2(-1)^n, for n=4,5,6,... . (This has been verified up to n=1000.)
LINKS
Shalosh B. Ekhad and Doron Zeilberger, Automatic Counting of Tilings of Skinny Plane Regions, arXiv preprint arXiv:1206.4864 [math.CO], 2012.
FORMULA
a(n) = 2*A061646(n+1) = 4*F(n+1)^2-2*(-1)^(n+1). - Emeric Deutsch, Apr 04 2007; Gary Detlefs, Nov 27 2010
a(n) = 2*(F(n)^2+F(n+1)^2+F(n)*F(n+1)). - Emeric Deutsch, Apr 04 2007
G.f.: 2(1+x-x^2)/((1+x)(1-3x+x^2)). - R. J. Mathar, Nov 25 2008
EXAMPLE
a(2)=14 because F(2)^2+F(3)^2+F(4)^2=1+4+9=14.
MAPLE
with(combinat): a:=n->fibonacci(n)^2+fibonacci(n+1)^2+fibonacci(n+2)^2: seq(a(n), n=0..32); # Emeric Deutsch, Apr 04 2007
A000045 := proc(n) combinat[fibonacci](n) ; end: A127546 := proc(n) add( A000045(i+1)^2, i=n..n+2) ; end: for n from 1 to 33 do printf("%d, ", A127546(n)) ; od ; # R. J. Mathar, Apr 03 2007
with(combinat): seq(4*fibonacci(n+1)^2-2*(-1)^n, n=0..29)
MATHEMATICA
Total/@(Partition[Fibonacci[Range[0, 30]], 3, 1]^2) (* Harvey P. Dale, Oct 20 2011 *)
PROG
(PARI) for(n=0, 10, print1(4*fibonacci(n+1)^2-2*(-1)^n, ", "))
CROSSREFS
Cf. A061646.
Sequence in context: A275208 A000634 A006654 * A192484 A217861 A188492
KEYWORD
nonn
AUTHOR
Simone Severini, Apr 01 2007
EXTENSIONS
Edited and extended by R. J. Mathar, Emeric Deutsch and John W. Layman, Apr 09 2007
STATUS
approved