login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127053 Expansion of 1/(1+9*x*c(x)), where c(x) = g.f. for Catalan numbers A000108. 7
1, -9, 72, -585, 4734, -38358, 310662, -2516481, 20383110, -165104478, 1337341896, -10832484474, 87743071332, -710719065000, 5756823757890, -46630274845905, 377705217526470, -3059412293786310, 24781239462988800, -200728040080084110, 1625897123058144420 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Hankel transform is (-9)^n.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A039599(n,k)*(-10)^k.
G.f.: 2/(11 - 9*sqrt(1-4*x)). - G. C. Greubel, May 28 2019
MAPLE
c:=(1-sqrt(1-4*x))/2/x: ser:=series(1/(1+9*x*c), x=0, 24): seq(coeff(ser, x, n), n=0..21); # Emeric Deutsch, Mar 23 2007
MATHEMATICA
CoefficientList[Series[2/(11-9*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(2/(11-9*sqrt(1-4*x))) \\ G. C. Greubel, May 28 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(11-9*Sqrt(1-4*x)) )); // G. C. Greubel, May 28 2019
(Sage) (2/(11-9*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
CROSSREFS
Sequence in context: A003951 A252702 A033135 * A001809 A006135 A180836
KEYWORD
sign
AUTHOR
Philippe Deléham, Mar 21 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 23 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:13 EST 2023. Contains 367612 sequences. (Running on oeis4.)