login
A127052
Primes p such that denominator of Sum_{k=1..p-1} 1/k^8 is an eighth power.
1
2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 53, 67, 71, 73, 97, 101, 127, 131, 197, 199, 211, 251, 367, 373, 379, 773, 787, 797, 809, 811, 1373, 1433, 1439, 2027, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229
OFFSET
1,1
LINKS
MATHEMATICA
d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^8; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/8)], AppendTo[a, i + 1]]]]; a]; d[2000]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 03 2007
STATUS
approved