login
A092570
Primes p which become a prime q under transformation of inner bits of binary representation in A092569. In binary representation of p, transformation of inner bits, 1 <-> 0, gives binary representation of q.
1
2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 43, 53, 59, 79, 83, 89, 103, 109, 113, 151, 157, 173, 191, 193, 211, 227, 233, 269, 277, 281, 307, 311, 337, 347, 349, 359, 367, 379, 389, 401, 409, 419, 421, 431, 457, 461, 487, 491, 499, 523, 569, 599, 607, 617, 653, 659
OFFSET
1,1
EXAMPLE
307 and 461 are terms because 307_10 = 100110011_2, transformation of inner bits gives 100110011_2 -> 111001101_2 = 461_10.
PROG
(PARI)T(p)={pow2=2; v=binary(p); L=#v-1; forstep(k=L, 2, -1, if(v[k], p-=pow2, p+=pow2); pow2*=2); return(p)};
forprime(p=2, 659, if(isprime(T(p)), print1(p, ", ")))
\\ Washington Bomfim, Jan 18 2011
CROSSREFS
Cf. A092569.
Sequence in context: A174144 A104885 A127052 * A133956 A176164 A141409
KEYWORD
base,nonn,easy
AUTHOR
Zak Seidov, Feb 28 2004
STATUS
approved