OFFSET
3,3
COMMENTS
This is an integer by a theorem of Waring and Wolstenholme.
Conjecture: If p is the n-th prime and H(n) is the n-th harmonic number, then denominator(H(p)/H(p-1))/numerator(H(p-1)/p^2) = p^3. A193758(p)/a(n) = p^3, p > 3. - Gary Detlefs, Feb 20 2013
The sequence which gives the numerators of H_{p-1} = Sum_{k=1..p-1} 1/k for p prime >= 5 is A076637. - Bernard Schott, Dec 02 2018
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 388 Problem 5.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 115.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 3..340
R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
FORMULA
MAPLE
MATHEMATICA
Table[Function[p, Numerator[Sum[1/k, {k, p - 1}]/p^2]]@ Prime@ n, {n, 3, 20}] (* Michael De Vlieger, Feb 04 2017 *)
PROG
(GAP) List(List(Filtered([5..80], p->IsPrime(p)), i->Sum([1..i-1], k->1/k)/i^2), NumeratorRat); # Muniru A Asiru, Dec 02 2018
(PARI) a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k))/p^2; \\ Michel Marcus, Dec 03 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 15 2001
STATUS
approved