OFFSET
0,5
COMMENTS
EXAMPLE
Rows are partial sums excluding terms in columns k = {1,3,6,10,...}:
row 2 = partial sums of [1, 3, 5,6, 8,9,10, 12,13,14,15, ...];
row 3 = partial sums of [1, 9, 23,32, 54,67,81, 113,131,150,170, ...];
row 4 = partial sums of [1, 33, 119,186, 380,511,661, 1045,1283,...].
The terms that are excluded in the partial sums are shown enclosed in
parenthesis in the table below. Rows of this table begin:
1,(1), 1, (1), 1, 1, (1), 1, 1, 1, (1), 1, 1, 1, 1, (1), 1, ...;
1,(2), 3, (4), 5, 6, (7), 8, 9, 10, (11), 12, 13, 14, 15, (16), ...;
1,(4), 9, (15), 23, 32, (42), 54, 67, 81, (96), 113, 131, 150, ...;
1,(10), 33, (65), 119, 186, (267), 380, 511, 661, (831), 1045, ...;
1,(34), 153, (339), 719, 1230, (1891), 2936, 4219, 5765, (7600), ...;
1,(154), 873, (2103), 5039, 9258, (15023), 25148, 38203, 54625, ..;
1,(874), 5913, (15171), 40319, 78522, (133147), 238124, 379339, ...;
1,(5914), 46233, (124755), 362879, 742218, (1305847), 2477468, ...;
1,(46234), 409113, (1151331), 3628799, 7742058, (14059423), ...;
1,(409114), 4037913, (11779971), 39916799, 88369098, (164977399),...;
Columns include:
k=1: A003422 (Left factorials: !n = Sum k!, k=0..n-1);
k=2: A007489 (Sum of k!, k=1..n);
k=3: A097422 (Sum{k=1 to n} H(k) k!, where H(k) = sum{j=1 to k} 1/j);
k=4: A033312 (n! - 1);
k=5: Partial sums of A001705;
k=6: partial sums of A000399 (Stirling numbers of first kind s(n,3)).
MAPLE
{T(n, k)=local(A=0, b=2, c=0, d=0); if(n==0, A=1, until(d>k, if(c==b*(b-1)/2, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 04 2007
STATUS
approved