login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125781
Rectangular table, read by antidiagonals, defined by the following rule: start with all 1's in row zero; from then on, row n+1 equals the partial sums of row n excluding terms in columns k = m*(m+1)/2 - 2 (m>=2).
16
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 24, 23, 14, 5, 1, 1, 77, 76, 52, 21, 6, 1, 1, 295, 294, 217, 91, 29, 7, 1, 1, 1329, 1328, 1033, 433, 141, 39, 8, 1, 1, 6934, 6933, 5604, 2307, 739, 216, 50, 9, 1, 1, 41351, 41350, 34416, 13804, 4276, 1274, 306, 62, 10, 1, 1
OFFSET
0,5
COMMENTS
Generated by a method similar to Moessner's factorial triangle (A125714).
FORMULA
Surprisingly, column 1 equals A091352 = column 1 of triangle A091351, in which column k equals row sums of the matrix power A091351^k. Column 3 of this table also equals column 1 of matrix power A091351^2.
EXAMPLE
Rows are partial sums excluding terms in columns k = {1,4,8,13,...}:
row 2 = partial sums of [1, 3,4, 6,7,8, 10,11,12,13, ...];
row 3 = partial sums of [1, 8,14, 29,39,50, 75,90,106,123, ...];
row 4 = partial sums of [1, 23,52, 141,216,306, 535,695,876,1079,...].
The terms that are excluded in the partial sums are shown enclosed in
parenthesis in the table below. Rows of this table begin:
1,(1), 1, 1,(1), 1, 1, 1,(1), 1, 1, 1, 1,(1), 1, 1, 1, ...;
1,(2), 3, 4,(5), 6, 7, 8,(9), 10, 11, 12, 13,(14), 15, 16, 17, ...;
1,(4), 8, 14,(21), 29, 39, 50,(62), 75, 90, 106, 123,(141), 160, 181,.;
1,(9), 23, 52,(91), 141, 216, 306,(412), 535, 695, 876, 1079,(1305),..;
1,(24), 76, 217,(433), 739, 1274, 1969,(2845), 3924, 5479, 7335,...;
1,(77), 294, 1033,(2307), 4276, 8200, 13679,(21014), 30534, 45528,...;
1,(295), 1328, 5604,(13804), 27483, 58017, 103545,(167868), 255305,...;
1,(1329), 6933, 34416,(92433), 195978, 451283, 855463,(1454823),...;
1,(6934), 41350, 237328,(688611), 1544074, 3847960, 7700971,...;
1,(41351), 278679, 1822753,(5670713), 13371684, 35818351, 75299744,...;
1,(278680), 2101433, 15473117,(51291468), 126591212, 362337006,...;
1,(2101434), 17574551, 144165763,(506502769), 1303252476,...;
1,(17574552), 161740315, 1464992791,(5430460072), 14517950305,...;
Column 1 of this table equals column 1 of triangle A091351;
triangle A091351 begins:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 9, 9, 4, 1;
1, 24, 30, 16, 5, 1;
1, 77, 115, 70, 25, 6, 1;
1, 295, 510, 344, 135, 36, 7, 1;
1, 1329, 2602, 1908, 805, 231, 49, 8, 1; ...
where column k of A091351 = row sums of matrix power A091351^k for k>=0.
PROG
(PARI) {T(n, k)=local(A=0, b=2, c=0, d=0); if(n==0, A=1, until(d>k, if(c==b*(b+1)/2-2, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}
CROSSREFS
Cf. A091351, A091352; columns: A125782, A125783, A125784, A125785, A125786; diagonals: A125787, A125788; A125789 (antidiagonal sums), A125714.
Sequence in context: A091491 A117418 A101494 * A091150 A091351 A058730
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 09 2006
STATUS
approved