login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117418
Triangle T, read by rows, such that column 2k+1 of T equals column k of T^2 and column 2k of T equals column k of T*R: [T^2](n+k,k) = T(n+2k+1,2k+1) and [T*R](n+k,k) = T(n+2k,2k) for n>=0, k>=0, where R = SHIFT_RIGHT(T).
11
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 23, 22, 14, 5, 1, 1, 66, 65, 50, 20, 6, 1, 1, 209, 208, 191, 79, 28, 7, 1, 1, 724, 723, 780, 322, 126, 37, 8, 1, 1, 2722, 2721, 3415, 1385, 572, 180, 48, 9, 1, 1, 11054, 11053, 15924, 6293, 2692, 871, 264, 58, 10, 1
OFFSET
0,5
COMMENTS
Here SHIFT_RIGHT(T) shifts the columns of T one place to the right and fills column 0 with [1,0,0,0,...].
FORMULA
T(n,2k+1) = Sum_{j=0..n-2k-1} T(n-k-1,k+j)*T(k+j,k) for n>2k and T(n,2k) = Sum_{j=0..n-2k} T(n-k,k+j)*T(k-1+j,k-1) for n>=2k, with T(n,n) = T(n,0) = 1.
EXAMPLE
Triangle T begins:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 9, 8, 4, 1;
1, 23, 22, 14, 5, 1;
1, 66, 65, 50, 20, 6, 1;
1, 209, 208, 191, 79, 28, 7, 1;
1, 724, 723, 780, 322, 126, 37, 8, 1;
1, 2722, 2721, 3415, 1385, 572, 180, 48, 9, 1;
1, 11054, 11053, 15924, 6293, 2692, 871, 264, 58, 10, 1;
The matrix square T^2 = A117427:
1;
2, 1;
4, 4, 1;
9, 14, 6, 1;
23, 50, 28, 8, 1;
66, 191, 126, 48, 10, 1;
209, 780, 572, 264, 70, 12, 1;
where column k of T^2 equals column 2k+1 of T.
Let matrix R = SHIFT_RIGHT(T):
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 4, 3, 1;
0, 1, 9, 8, 4, 1;
0, 1, 23, 22, 14, 5, 1;
then matrix product T*R = A117425:
1;
1, 1;
1, 3, 1;
1, 8, 5, 1;
1, 22, 20, 7, 1;
1, 65, 79, 37, 9, 1;
1, 208, 322, 180, 58, 11, 1;
where column k of T*R equals column 2k of T.
MATHEMATICA
A117418[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, If[k==n-1, n, Sum[A117418[n -Floor[(k+1)/2], Floor[k/2] +j]*A117418[Floor[(k-1)/2] +j, Floor[(k-1)/2]], {j, 0, n-k}] ]]];
Table[A117418[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 31 2021 *)
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k || k==0, 1, if(n==k+1, n, sum(j=0, n-k, T(n-((k+1)\2), k\2+j)*T((k-1)\2+j, (k-1)\2)))))
(Sage)
@CachedFunction
def A117418(n, k):
if (k<0 or k>n): return 0
elif (k==0 or k==n): return 1
elif (k==n-1): return n
else: return sum( A117418(n -(k+1)//2, k//2 +j)*A117418((k-1)//2 +j, (k-1)//2) for j in (0..n-k))
flatten([[A117418(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 31 2021
CROSSREFS
Cf. A117419, A117420, A117421, A117422, A117423, A117424, A117425 (T*SHIFT_RIGHT(T)), A117427 (T^2), A117428.
Sequence in context: A204849 A105632 A091491 * A101494 A125781 A091150
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 14 2006
STATUS
approved