login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T, read by rows, such that column 2k+1 of T equals column k of T^2 and column 2k of T equals column k of T*R: [T^2](n+k,k) = T(n+2k+1,2k+1) and [T*R](n+k,k) = T(n+2k,2k) for n>=0, k>=0, where R = SHIFT_RIGHT(T).
11

%I #12 May 31 2021 21:51:15

%S 1,1,1,1,2,1,1,4,3,1,1,9,8,4,1,1,23,22,14,5,1,1,66,65,50,20,6,1,1,209,

%T 208,191,79,28,7,1,1,724,723,780,322,126,37,8,1,1,2722,2721,3415,1385,

%U 572,180,48,9,1,1,11054,11053,15924,6293,2692,871,264,58,10,1

%N Triangle T, read by rows, such that column 2k+1 of T equals column k of T^2 and column 2k of T equals column k of T*R: [T^2](n+k,k) = T(n+2k+1,2k+1) and [T*R](n+k,k) = T(n+2k,2k) for n>=0, k>=0, where R = SHIFT_RIGHT(T).

%C Here SHIFT_RIGHT(T) shifts the columns of T one place to the right and fills column 0 with [1,0,0,0,...].

%H G. C. Greubel, <a href="/A117418/b117418.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n,2k+1) = Sum_{j=0..n-2k-1} T(n-k-1,k+j)*T(k+j,k) for n>2k and T(n,2k) = Sum_{j=0..n-2k} T(n-k,k+j)*T(k-1+j,k-1) for n>=2k, with T(n,n) = T(n,0) = 1.

%e Triangle T begins:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 4, 3, 1;

%e 1, 9, 8, 4, 1;

%e 1, 23, 22, 14, 5, 1;

%e 1, 66, 65, 50, 20, 6, 1;

%e 1, 209, 208, 191, 79, 28, 7, 1;

%e 1, 724, 723, 780, 322, 126, 37, 8, 1;

%e 1, 2722, 2721, 3415, 1385, 572, 180, 48, 9, 1;

%e 1, 11054, 11053, 15924, 6293, 2692, 871, 264, 58, 10, 1;

%e The matrix square T^2 = A117427:

%e 1;

%e 2, 1;

%e 4, 4, 1;

%e 9, 14, 6, 1;

%e 23, 50, 28, 8, 1;

%e 66, 191, 126, 48, 10, 1;

%e 209, 780, 572, 264, 70, 12, 1;

%e where column k of T^2 equals column 2k+1 of T.

%e Let matrix R = SHIFT_RIGHT(T):

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 1, 2, 1;

%e 0, 1, 4, 3, 1;

%e 0, 1, 9, 8, 4, 1;

%e 0, 1, 23, 22, 14, 5, 1;

%e then matrix product T*R = A117425:

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 8, 5, 1;

%e 1, 22, 20, 7, 1;

%e 1, 65, 79, 37, 9, 1;

%e 1, 208, 322, 180, 58, 11, 1;

%e where column k of T*R equals column 2k of T.

%t A117418[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, If[k==n-1, n, Sum[A117418[n -Floor[(k+1)/2], Floor[k/2] +j]*A117418[Floor[(k-1)/2] +j, Floor[(k-1)/2]], {j,0,n-k}] ]]];

%t Table[A117418[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 31 2021 *)

%o (PARI) T(n,k)=if(n<k || k<0,0,if(n==k || k==0,1,if(n==k+1,n, sum(j=0,n-k,T(n-((k+1)\2),k\2+j)*T((k-1)\2+j,(k-1)\2)))))

%o (Sage)

%o @CachedFunction

%o def A117418(n, k):

%o if (k<0 or k>n): return 0

%o elif (k==0 or k==n): return 1

%o elif (k==n-1): return n

%o else: return sum( A117418(n -(k+1)//2, k//2 +j)*A117418((k-1)//2 +j, (k-1)//2) for j in (0..n-k))

%o flatten([[A117418(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 31 2021

%Y Cf. A117419, A117420, A117421, A117422, A117423, A117424, A117425 (T*SHIFT_RIGHT(T)), A117427 (T^2), A117428.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Mar 14 2006