OFFSET
0,5
COMMENTS
LINKS
G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy] See Table 5.
FORMULA
T(n,k) = T(n,k-1) + T(n-1,2*k) for n>0, k>0, with T(0,n)=T(n,0)=1 for n>=0.
EXAMPLE
Recurrence T(n,k) = T(n,k-1) + T(n-1,2*k) is illustrated by:
T(4,3) = T(4,2) + T(3,6) = 201 + 455 = 656;
T(5,3) = T(5,2) + T(4,6) = 1827 + 6321 = 8148;
T(6,3) = T(6,2) + T(5,6) = 27337 + 140231 = 167568.
Rows of this table begin:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...;
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, ...;
1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, ...;
1, 36, 201, 656, 1625, 3396, 6321, 10816, 17361, 26500, 38841, ...;
1, 202, 1827, 8148, 25509, 64350, 140231, 274856, 497097, ...;
1, 1828, 27337, 167568, 664665, 2026564, 5174449, 11622976, ...;
1, 27338, 692003, 5866452, 29559717, 109082974, 326603719, ...;
1, 692004, 30251721, 356855440, 2290267225, 10243585092, ...; ...
Triangle A078121 begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 10, 16, 8, 1;
1, 36, 84, 64, 16, 1;
1, 202, 656, 680, 256, 32, 1; ...
where row sums form column 1 of this table A125790,
Matrix cube A078121^3 begins:
1;
3, 1;
9, 6, 1;
35, 36, 12, 1;
201, 286, 144, 24, 1;
1827, 3396, 2300, 576, 48, 1; ...
where row sums form column 3 of this table A125790,
MATHEMATICA
T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 2*k]; T[0, _] = T[_, 0] = 1; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 15 2015 *)
PROG
(PARI) {T(n, k, p=0, q=2)=local(A=Mat(1), B); if(n<p||p<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return((A^(k+1))[n+1, p+1]))}
for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 10 2006, corrected Dec 12 2006
STATUS
approved