login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125790
Rectangular table where column k equals row sums of matrix power A078121^k, read by antidiagonals.
13
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 9, 4, 1, 1, 36, 35, 16, 5, 1, 1, 202, 201, 84, 25, 6, 1, 1, 1828, 1827, 656, 165, 36, 7, 1, 1, 27338, 27337, 8148, 1625, 286, 49, 8, 1, 1, 692004, 692003, 167568, 25509, 3396, 455, 64, 9, 1, 1, 30251722, 30251721, 5866452, 664665, 64350, 6321, 680, 81, 10, 1
OFFSET
0,5
COMMENTS
Determinant of n X n upper left submatrix is 2^[n(n-1)(n-2)/6] (see A125791). Related to partitions of numbers into powers of 2 (see A078121). Triangle A078121 shifts left one column under matrix square.
LINKS
G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy] See Table 5.
FORMULA
T(n,k) = T(n,k-1) + T(n-1,2*k) for n>0, k>0, with T(0,n)=T(n,0)=1 for n>=0.
EXAMPLE
Recurrence T(n,k) = T(n,k-1) + T(n-1,2*k) is illustrated by:
T(4,3) = T(4,2) + T(3,6) = 201 + 455 = 656;
T(5,3) = T(5,2) + T(4,6) = 1827 + 6321 = 8148;
T(6,3) = T(6,2) + T(5,6) = 27337 + 140231 = 167568.
Rows of this table begin:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...;
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, ...;
1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, ...;
1, 36, 201, 656, 1625, 3396, 6321, 10816, 17361, 26500, 38841, ...;
1, 202, 1827, 8148, 25509, 64350, 140231, 274856, 497097, ...;
1, 1828, 27337, 167568, 664665, 2026564, 5174449, 11622976, ...;
1, 27338, 692003, 5866452, 29559717, 109082974, 326603719, ...;
1, 692004, 30251721, 356855440, 2290267225, 10243585092, ...; ...
Triangle A078121 begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 10, 16, 8, 1;
1, 36, 84, 64, 16, 1;
1, 202, 656, 680, 256, 32, 1; ...
where row sums form column 1 of this table A125790,
and column k of A078121 equals column 2^k-1 of this table A125790.
Matrix cube A078121^3 begins:
1;
3, 1;
9, 6, 1;
35, 36, 12, 1;
201, 286, 144, 24, 1;
1827, 3396, 2300, 576, 48, 1; ...
where row sums form column 3 of this table A125790,
and column 0 of A078121^3 forms column 2 of this table A125790.
MATHEMATICA
T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 2*k]; T[0, _] = T[_, 0] = 1; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 15 2015 *)
PROG
(PARI) {T(n, k, p=0, q=2)=local(A=Mat(1), B); if(n<p||p<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return((A^(k+1))[n+1, p+1]))}
for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A078121; A002577; A125791; columns: A002577, A125792, A125793, A125794, A125795, A125796; diagonals: A125797, A125798; A125799 (antidiagonal sums); related table: A125800 (q=3).
Sequence in context: A112705 A070895 A127054 * A370005 A294082 A129705
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 10 2006, corrected Dec 12 2006
STATUS
approved