OFFSET
0,5
COMMENTS
M also satisfies: [M^(2k)](i,j) = [M^k](i+1,j+1) for all i,j,k>=0; thus [M^(2^n)](i,j) = M(i+n,j+n) for all n>=0.
LINKS
Alois P. Heinz, Rows n = 0..80, flattened
FORMULA
EXAMPLE
The square of the matrix is the same matrix excluding the first row and column:
[1, 0, 0, 0, 0]^2 = [ 1, 0, 0, 0, 0]
[1, 1, 0, 0, 0] [ 2, 1, 0, 0, 0]
[1, 2, 1, 0, 0] [ 4, 4, 1, 0, 0]
[1, 4, 4, 1, 0] [10,16, 8, 1, 0]
[1,10,16, 8, 1] [36,84,64,16, 1]
MAPLE
M:= proc(i, j) option remember; `if`(j=0 or i=j, 1,
add(M(i-1, k)*M(k, j-1), k=0..i-1))
end:
seq(seq(M(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 27 2015
MATHEMATICA
rows = 10; M[k_] := Table[ Which[j == 1, 1, i == j, 1, 1 < j < i, m[i, j], True, 0], {i, 1, k}, {j, 1, k}]; m2[i_, j_] := m[i+1, j+1]; M2[k_] := Table[ Which[j<i, m2[i, j], j == i, 1, True, 0], {i, 1, k}, {j, 1, k}]; sol[k_] := Thread[ Flatten[ M[k].M[k]] == Flatten[M2[k]]] // Solve; Table[M[rows][[i, j]], {i, 1, rows}, {j, 1, i}] /. sol[rows] // Flatten (* Jean-François Alcover, Feb 27 2015 *)
M[i_, j_] := M[i, j] = If[j == 0 || i == j, 1, Sum[M[i-1, k]*M[k, j-1], {k, 0, i-1}]]; Table[Table[M[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 27 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 18 2002
STATUS
approved