|
|
A016131
|
|
Expansion of 1/((1-2x)(1-8x)).
|
|
15
|
|
|
1, 10, 84, 680, 5456, 43680, 349504, 2796160, 22369536, 178956800, 1431655424, 11453245440, 91625967616, 733007749120, 5864062009344, 46912496107520, 375299968925696, 3002399751536640, 24019198012555264, 192153584100966400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
For n > 1, a(n-1) is the (2^n-3)rd coefficient in the expansion of th(0)=y, th(n+1)=th(n)*(th(n)+1).
If 2^(n+1) is the length of the even leg of a primitive Pythagorean triangle (PPT) then it constrains the odd leg to have a length of 4^n-1 and the hypotenuse to have a length of 4^n+1. The resulting triangle has a semiperimeter of 4^n+2^n, an area of 8^n-2^n and an inradius of 2^n-1. Now consider the term 8^n-2^n: it must at least be divisible by 6 because it is the area of a PPT. a(n) is 1/6 the area of such triangles. - Frank M Jackson, Dec 28 2017
|
|
LINKS
|
|
|
FORMULA
|
a(n-1) = ((5+sqrt 9)^n-(5-sqrt 9)^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
E.g.f.: e^(2*x) * (4*e^(6*x) - 1)/3. - Iain Fox, Dec 28 2017
|
|
MAPLE
|
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1 - 2x)(1 - 8x)), {x, 0, 100}], x] (* Stefan Steinerberger, Apr 21 2006 *)
|
|
PROG
|
(Sage) [lucas_number1(n, 10, 16) for n in range(1, 21)] # Zerinvary Lajos, Apr 26 2009
(Sage) [(8^n - 2^n)/6 for n in range(1, 21)] # Zerinvary Lajos, Jun 05 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|