login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333157 Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column. 15
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(n,k) is the number of k-regular symmetric relations on n labeled nodes.

T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.

Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..230

FORMULA

T(n,k) = T(n,n-k).

EXAMPLE

Triangle begins:

  1,

  1,   1;

  1,   2,     1;

  1,   4,     4,      1;

  1,  10,    18,     10,       1;

  1,  26,   112,    112,      26,      1;

  1,  76,   820,   1760,     820,     76,     1;

  1, 232,  6912,  35150,   35150,   6912,   232,   1;

  1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;

  ...

PROG

(PARI) \\ See script in A295193 for comments.

GraphsByDegreeSeq(n, limit, ok)={

  local(M=Map(Mat([x^0, 1])));

  my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));

  my(recurse(r, p, i, q, v, e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k)))));

  for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0))); Mat(M);

}

Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p, r)->poldegree(p)-valuation(p, x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i, 1], d=poldegree(p)); v[1+d]+=M[i, 2]; if(pollead(p)==n, v[2+d]+=M[i, 2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}

for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020

CROSSREFS

Columns k=0..8 are A000012, A000085, A000986, A110040, A139670, A139671, A139673, A139674, A139675.

Row sums are A322698.

Central coefficients are A333164.

Cf. A188448 (transposed as array).

Cf. A059441, A295193, A333158, A333159, A333161.

Sequence in context: A326326 A307139 A078121 * A119732 A260625 A306614

Adjacent sequences:  A333154 A333155 A333156 * A333158 A333159 A333160

KEYWORD

nonn,tabl

AUTHOR

Andrew Howroyd, Mar 09 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 09:26 EST 2022. Contains 350454 sequences. (Running on oeis4.)