login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110040
Number of {2,3}-regular graphs, i.e., labeled simple graphs (no multi-edges or loops) on n vertices, each of degree 2 or 3.
7
1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704, 30649435140, 1322299270600, 64008728200384, 3447361661136640, 205070807479444088, 13388424264027157520, 953966524932871436800, 73817914562041635228928
OFFSET
0,5
COMMENTS
P-recursive.
Starting at n=3, number of symmetric binary matrices with all row sums 3. - R. H. Hardin, Jun 12 2008
From R. J. Mathar, Apr 07 2017: (Start)
These are the row sums of the following matrix, which counts symmetric n X n {0,1} matrices with each row and column sum equal to 3 and trace t, 0 <= t <= n:
0: 1
1: 0 0
2: 0 0 0
3: 0 0 0 1
4: 1 0 6 0 3
5: 0 30 0 70 0 12
6: 70 0 810 0 810 0 70
7: 0 5670 0 19355 0 9660 0 465
This has A001205 on the diagonal. (End)
The traceless (2n) X (2n) binary matrices in that triangle seem to be counted in A002829. - Alois P. Heinz, Apr 07, 2017
REFERENCES
Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009]
LINKS
I. P. Goulden and D. M. Jackson, Labelled graphs with small vertex degrees and P-recursiveness, SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093). [Gives e.g.f.]
FORMULA
Satisfies the linear recurrence: (-150917976*n^2 - 105258076*n^3 - 1925*n^9 - 13339535*n^5 - 45995730*n^4 - 357423*n^7 - 2637558*n^6 - 120543840*n - n^11 - 66*n^10 - 39916800 - 32670*n^8)*a(n) + (-11028590*n^4 - 65*n^9 - n^10 - 2310945*n^5 - 1860*n^8 - 30810*n^7 - 326613*n^6 - 80627040*n - 39916800 - 34967140*n^3 - 70290936*n^2)*a(n + 1) + (3*n^10 - 39916800 + 187*n^9 + 5076*n^8 + 78558*n^7 + 761103*n^6 + 4757403*n^5 + 18949074*n^4 + 44946092*n^3 + 51046344*n^2 - 793440*n)*a(n + 2) + (-93139200 - 16175880*n^3 - 56394184*n^2 - 110513760*n - 2854446*n^4 - 14*n^8 - 840*n^7 - 21756*n^6 - 317520*n^5)*a(n + 3) + (45780*n^6 + 1785*n^7 + 111580320*n^2 + 660450*n^5 + 5856270*n^4 + 32645865*n^3 + 174636000 + 213450300*n + 30*n^8)*a(n + 4) + (-22952160 - 681*n^6 - 16419*n^5 - 217995*n^4 - 8082204*n^2 - 20896956*n - 12*n^7 - 1721253*n^3)*a(n + 5) + (1804641*n^3 + 9*n^7 + 14442*n^5 + 208920*n^4 + 32266080 + 9307488*n^2 + 26537388*n + 552*n^6)*a(n + 6) + (-158400 - 15160*n - 3994*n^3 - 31072*n^2 - 6*n^5 - 248*n^4)*a(n + 7) + (20123*n^3 + 706210*n + 27*n^5 + 170067*n^2 + 1148400 + 1173*n^4)*a(n + 8) + (7899*n^2 + 60684*n + 444*n^3 + 9*n^4 + 170940)*a(n + 9) + (-6894*n - 25740 - 18*n^3 - 612*n^2)*a(n + 10) + (-48*n - 528)*a(n + 11) + 24*a(n + 12).
Differential equation satisfied by the exponential generating function {F(0) = 1, 9*t^4*(t^4 + t - 2 + 3*t^2)^2*(d^2/dt^2)F(t) + 3*t*(t^4 + t - 2 + 3*t^2)*(10*t^8 + 34*t^3 - 16*t + 16*t^6 - 2*t^5 - 24*t^2 - 4*t^7 + 8 + t^10 - 14*t^4)*(d/dt)F(t) - t^3*(-22*t^2 + t^8 - 24*t^3 + t^9 + 8*t^7 + 14*t^6 + 15*t^5 + 12 + 16*t + 9*t^4)*(t^4 + t - 2 + 3*t^2)*F(t)}.
Sum_{a_2 = 0..n} Sum_{d_2 = 0..min(floor((3n - 2a_2)/2), floor(n/2), n - a_2)} Sum_{d_3 = 0..min(floor((3n - 2a_2 - 2d_2)/3), floor((n-2d_2)/3), n - a_2 - d_2} Sum_{d_1 = 0..min(3n - 2a_2 - 2d_2 - 3d_3, n - 2d_2 - 3d_3) Sum_{b = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1)/4), floor((n - d_2 - d_3 - a_2)/2)} Sum_{c = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1 - 4b)/6), floor((n - a_2 - 2b - d_2 - d_3)/2))} Sum_{a_1 = ceiling((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)..floor((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)} (-1)^(a_2 + b + d_2)*n!*(2a_1 + d_1)!/(2^(n + a_1 - c - d_3)*3^(n - a_2 - 2b - d_2 - c)*a_1!*a_2!*b!*c!*d_1!*d_2!*d_3!*(n - a_2 - 2b - d_2 - 2c - d_3)!). - Shanzhen Gao, Jun 05 2009
Recurrence (of order 8): 12*(27*n^4 - 423*n^3 + 2427*n^2 - 5639*n + 4384)*a(n) = 6*(n-1)*(81*n^4 - 1242*n^3 + 7011*n^2 - 15528*n + 10352)*a(n-1) + 3*(n-2)*(n-1)*(81*n^5 - 1269*n^4 + 7551*n^3 - 20841*n^2 + 29934*n - 16040)*a(n-2) - 3*(n-2)*(n-1)*(135*n^5 - 2115*n^4 + 13287*n^3 - 37537*n^2 + 46430*n - 21848)*a(n-3) + (n-3)*(n-2)*(n-1)*(567*n^5 - 9396*n^4 + 59895*n^3 - 169590*n^2 + 191744*n - 57040)*a(n-4) - 2*(n-4)*(n-3)*(n-2)*(n-1)*(135*n^4 - 1386*n^3 + 5034*n^2 - 6529*n + 648)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^5 - 1566*n^4 + 11367*n^3 - 37080*n^2 + 47872*n - 17424)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1113*n^2 - 1433*n + 348)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1320*n^2 - 1946*n + 776)*a(n-8). - Vaclav Kotesovec, Oct 23 2023
a(n) ~ 3^(n/2) * n^(3*n/2) / (2^(n + 1/2) * exp(3*n/2 - sqrt(3*n) + 13/4)) * (1 + 119/(24*sqrt(3*n)) - 2519/(3456*n)). - Vaclav Kotesovec, Oct 27 2023, extended Oct 28 2023
EXAMPLE
(Graphs listed by edgeset)
a(3)=1: {(1,2), (2,3), (3,1)}
a(4)=10: {(1,2), (2,3), (3,4), (4,1)}, {(1,2), (2,3), (3,4), (4,1), (1,4)}, {(1,2), (2,3), (3,4), (4,1), (2,3)}, {(1,2), (2,4), (3,4), (1,3)}, {(1,2), (2,4), (3,4), (1,3), (2,3)}, {(1,2), (2,4), (3,4), (1,3), (1,4)}, {(1,3), (2,3), (2,4), (1,4)}, {(1,3), (2,3), (2,4), (1,4), (1,2)}, {(1,3), (2,3), (2,4), (1,4), (3,4)}, {(1,2), (1,3), (1,4) (2,3), (2,4), (3,4)},
MATHEMATICA
RecurrenceTable[{-b[n] - b[1 + n] + (-2 + 3*n)*b[2 + n] - 14*b[3 + n] + (105 + 30*n)*b[4 + n] + (-69 - 12*n)*b[5 + n] + (582 + 147*n + 9*n^2)* b[6 + n] + (-20 - 6*n)*b[7 + n] + (1160 + 363*n + 27*n^2)*b[8 + n] + (1554 + 255*n + 9*n^2)* b[9 + n] + (-2340 - 414*n - 18*n^2)*b[10 + n] + (-528 - 48*n)*b[11 + n] + (288 + 24*n)*b[12 + n] == 0, b[0] == 1, b[1] == 0, b[2] == 0, b[3] == 1/6, b[4] == 5/12, b[5] == 14/15, b[6] == 22/9, b[7] == 3515/504, b[8] == 30319/1440, b[9] == 10823/162, b[10] == 8385799/37800, b[11] == 510823919/665280}, b, {n, 0, 25}] * Range[0, 25]! (* Vaclav Kotesovec, Oct 23 2023 *)
CROSSREFS
Cf. A000986 (sums 2), A000085 (sums 1), A139670 (sums 3).
Sequence in context: A184131 A239651 A014484 * A298074 A181042 A263370
KEYWORD
easy,nonn
AUTHOR
Marni Mishna, Jul 08 2005
EXTENSIONS
Edited and extended by Max Alekseyev, May 08 2010
STATUS
approved