login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110038
The partition function G(n,5).
9
1, 1, 2, 5, 15, 52, 202, 869, 4075, 20645, 112124, 648649, 3976633, 25719630, 174839120, 1245131903, 9263053753, 71806323461, 578719497070, 4839515883625, 41916097982471, 375401824277096, 3471395994487422, 33099042344383885, 325005134436155395
OFFSET
0,3
COMMENTS
Set partitions into sets of size at most 5. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [Joerg Arndt, Dec 07 2012]
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..591 (terms 0..200 from Alois P. Heinz)
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
F. L. Miksa, L. Moser and M. Wyman, Restricted partitions of finite sets, Canad. Math. Bull., 1 (1958), 87-96.
FORMULA
E.g.f.: exp( x + x^2/2 + x^3/6 + x^4/24 + x^5/120 ).
a(n) = n! * sum(k=1..n, 1/k! * sum(r=0..k, C(k,r) * sum(m=0..r, 2^(m-r) * C(r,m) * sum(j=0..m, C(m,j) * C(j,n-m-k-j-r) * 6^(j-m) * 24^(n-r-m-k-2*j) * 120^(m+k+j+r-n))))). - Vladimir Kruchinin, Jan 25 2011
a(n) = G(n,5) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - Alois P. Heinz, Apr 20 2012
MAPLE
G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
a:= n-> G(n, 5):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 20 2012
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [1, 1, 2, 5, 15][n+1],
a(n-1)+(n-1)*(a(n-2)+(n-2)/2*(a(n-3)+(n-3)/3*(a(n-4)
+(n-4)/4*a(n-5)))))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 15 2013
MATHEMATICA
G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1] *n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; a[n_] := G[n, 5]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
CROSSREFS
The sequences G(n,1), G(n,2), G(n,3), G(n,4), G(n,5), G(n,6) are given by A000012, A000085, A001680, A001681, A110038, A148092 respectively.
Column k=5 of A229223.
Cf. A276925.
Sequence in context: A287666 A158829 A306551 * A343666 A276722 A287584
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 13 2009
STATUS
approved