login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110036
Constant terms of the partial quotients of the continued fraction expansion of 1 + Sum_{n>=0} 1/x^(2^n), where each partial quotient has the form {x + a(n)} after the initial constant term of 1.
2
1, -1, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, -2, 0, 2, 0, 0, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, -2, 0, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, -2, 0
OFFSET
0,3
COMMENTS
Suggested by Ralf Stephan.
For n>1, |a(n)| = 2*A090678(n) where A090678(n) = A088567(n) mod 2 and A088567(n) = number of "non-squashing" partitions of n into distinct parts.
FORMULA
G.f. (1-x+3*x^2+x^3)/(1+x^2) - 2*Sum_{k>=1} x^(3*2^(k-1))/Product_{j=0..k} (1+x^(2^j)).
EXAMPLE
1 + 1/x + 1/x^2 + 1/x^4 + 1/x^8 + 1/x^16 + ... =
[1; x - 1, x + 2, x, x, x - 2, x, x + 2, x, x - 2, ...].
PROG
(PARI) contfrac(1+sum(n=0, 10, 1/x^(2^n)))
(PARI) a(n)=polcoeff((1-x+3*x^2+x^3)/(1+x^2)- 2*sum(k=1, #binary(n), x^(3*2^(k-1))/prod(j=0, k, 1+x^(2^j)+x*O(x^n))), n)
(PARI) a(n)=subst(contfrac(1+sum(k=0, #binary(n+1), 1/x^(2^k)))[n+1], x, 0)
CROSSREFS
Sequence in context: A029305 A339441 A226914 * A308046 A289323 A086937
KEYWORD
cofr,sign
AUTHOR
Paul D. Hanna, Jul 08 2005
STATUS
approved