OFFSET
0,4
COMMENTS
"Non-squashing" refers to the property that p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k: if the parts are stacked in increasing size, at no point does the sum of the parts above a certain part exceed the size of that part.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
Amanda Folsom et al., On a general class of non-squashing partitions, Discrete Mathematics 339.5 (2016): 1482-1506.
Y. Homma, J. H. Ryu, and B. Tong, Sequence non-squashing partitions, Slides from a talk, 2014.
O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
a(0)=1, a(1)=1; and for m >= 1, a(2m) = a(2m-1) + a(m) - 1, a(2m+1) = a(2m) + 1.
Or, a(0)=1, a(1)=1; and for m >= 1, a(2m) = a(0)+a(1)+...+a(m)-1; a(2m+1) = a(0)+a(1)+...+a(m).
G.f.: 1 + x/(1-x) + Sum_{k>=1} x^(3*2^(k-1))/Product_{j=0..k} (1-x^(2^j)).
EXAMPLE
The partitions of n = 1 through 6 are: 1; 2; 3=1+2; 4=1+3; 5=1+4=2+3; 6=1+5=2+4=1+2+3.
MAPLE
f := proc(n) option remember; local t1, i; if n <= 2 then RETURN(1); fi; t1 := add(f(i), i=0..floor(n/2)); if n mod 2 = 0 then RETURN(t1-1); fi; t1; end;
t1 := 1 + x/(1-x); t2 := add( x^(3*2^(k-1))/ mul( (1-x^(2^j)), j=0..k), k=1..10); series(t1+t2, x, 256); # increase 10 to get more terms
MATHEMATICA
max = 63; f = 1 + x/(1-x) + Sum[x^(3*2^(k-1))/Product[(1-x^(2^j)), {j, 0, k}], {k, 1, Log[2, max]}]; s = Series[f, {x, 0, max}] // Normal; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 06 2014 *)
PROG
(Haskell)
import Data.List (transpose)
a088567 n = a088567_list !! n
a088567_list = 1 : tail xs where
xs = 0 : 1 : zipWith (+) xs (tail $ concat $ transpose [xs, tail xs])
-- Reinhard Zumkeller, Nov 15 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 30 2003
STATUS
approved