login
A088567
Number of "non-squashing" partitions of n into distinct parts.
17
1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 18, 19, 24, 25, 31, 32, 40, 41, 50, 51, 63, 64, 77, 78, 95, 96, 114, 115, 138, 139, 163, 164, 194, 195, 226, 227, 266, 267, 307, 308, 357, 358, 408, 409, 471, 472, 535, 536, 612, 613, 690, 691, 785, 786, 881, 882, 995, 996, 1110, 1111
OFFSET
0,4
COMMENTS
"Non-squashing" refers to the property that p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k: if the parts are stacked in increasing size, at no point does the sum of the parts above a certain part exceed the size of that part.
LINKS
Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
Amanda Folsom et al., On a general class of non-squashing partitions, Discrete Mathematics 339.5 (2016): 1482-1506.
Y. Homma, J. H. Ryu, and B. Tong, Sequence non-squashing partitions, Slides from a talk, 2014.
O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
a(0)=1, a(1)=1; and for m >= 1, a(2m) = a(2m-1) + a(m) - 1, a(2m+1) = a(2m) + 1.
Or, a(0)=1, a(1)=1; and for m >= 1, a(2m) = a(0)+a(1)+...+a(m)-1; a(2m+1) = a(0)+a(1)+...+a(m).
G.f.: 1 + x/(1-x) + Sum_{k>=1} x^(3*2^(k-1))/Product_{j=0..k} (1-x^(2^j)).
G.f.: Product_{n>=0} 1/(1-x^(2^n)) - Sum_{n >= 1} ( x^(2^n)/ ((1+x^(2^(n-1)))*Product_{j=0..n-1} (1-x^(2^j)) ) ). (The two terms correspond to A000123 and A088931 respectively.)
EXAMPLE
The partitions of n = 1 through 6 are: 1; 2; 3=1+2; 4=1+3; 5=1+4=2+3; 6=1+5=2+4=1+2+3.
MAPLE
f := proc(n) option remember; local t1, i; if n <= 2 then RETURN(1); fi; t1 := add(f(i), i=0..floor(n/2)); if n mod 2 = 0 then RETURN(t1-1); fi; t1; end;
t1 := 1 + x/(1-x); t2 := add( x^(3*2^(k-1))/ mul( (1-x^(2^j)), j=0..k), k=1..10); series(t1+t2, x, 256); # increase 10 to get more terms
MATHEMATICA
max = 63; f = 1 + x/(1-x) + Sum[x^(3*2^(k-1))/Product[(1-x^(2^j)), {j, 0, k}], {k, 1, Log[2, max]}]; s = Series[f, {x, 0, max}] // Normal; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 06 2014 *)
PROG
(Haskell)
import Data.List (transpose)
a088567 n = a088567_list !! n
a088567_list = 1 : tail xs where
xs = 0 : 1 : zipWith (+) xs (tail $ concat $ transpose [xs, tail xs])
-- Reinhard Zumkeller, Nov 15 2012
CROSSREFS
Cf. A000123, A088575, A088585, A088931, A089054. A090678 gives sequence mod 2.
Cf. A187821 (non-squashing partitions of n into odd parts).
Sequence in context: A342558 A017863 A242634 * A029014 A304631 A298603
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 30 2003
STATUS
approved