

A088568


3*n  2*(partial sums of Kolakoski sequence A000002).


24



1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


COMMENTS

It is conjectured that a(n) = o(n).
It is conjectured that the density of 1's and that of 2's in the Kolakoski sequence A000002 are equal to 1/2. The deficit of 2's in the Kolakoski sequence at rank n being defined as n/2  number of 2's in the Kolakoski word of length n, a(n) is equal to twice the deficit of 2's (or twice the excess of 1's). Equivalently, the number of 2's up to rank n in the Kolakoski sequence is (n  a(n))/2.  JeanChristophe Hervé, Oct 05 2014
The conjecture about the densities of 1's and 2's is equivalent to a(n) = o(n). The graph shows that a(n) seems to oscillate around 0 with a pseudoperiodic and fractal pattern.  JeanChristophe Hervé, Oct 05 2014
It is conjectured that a(n) = O(log(n)) (see PlanetMath link). Note that for a random sequence of 1's and 1's, we would have O(sqrt(n)).  Daniel Forgues, Jul 10 2015
The linked PlanetMath text mentions 0.5*n + O(log(n)) only in respect of an empirical observation, apparently to support the density conjecture (the conjecture described above in the first comment dated Oct 05 2014).  Peter Munn, Aug 03 2022
The conjecture that a(n) = O(log(n)) seems incorrect as a(n) seems to grow as fast as sqrt(n), see A289323 and note that a(2^n) = A289323(n), so for example a(2^64) = A289323(64) = 836086974 which is much larger in absolute value than log(2^64), but about 0.19*2^32.  Richard P. Brent, Jul 07 2017
For n = 124 to 147, we have the same 24 values as for n = 42 to 65: {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, and for n = 173 to 200, we have the same 28 values as for n = 11 to 38: {1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0}.  Daniel Forgues, Jul 11 2015


LINKS



FORMULA



EXAMPLE

The sequence A000002 starts 1, 2, 2, 1, 1, 2, ..., so the sixth partial sum is 1 + 2 + 2 + 1 + 1 + 2 = 9, and therefore a(6) = 3*6  2*9 = 0.  Michael B. Porter, Jul 08 2016


CROSSREFS

Cf. A000002 (Kolakoski sequence), A054353 (partial sums of Kolakoski sequence), A156077 (number of 1's in the Kolakoski sequence).
For the discrepancy of the Kolakoski sequence see A294448 (this is simply the negation of the present sequence).


KEYWORD



AUTHOR



STATUS

approved



