This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088569 Anti-Kolakoski sequence (sequence of run lengths never coincides with the sequence itself). 3
 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Unique infinite word defined on alphabet {1,2} satisfying: a(1)=1, if a(n)=2 length of n-th run is 1, if a(n)=1 length of n-th run is 2. Kolakoski sequence satisfies the opposite definition: K(1)=1, if K(n)=2 length of n-th run is 2, if K(n)=1 length of n-th run is 1. Equals A049705 without the first term. - Jean-Christophe HervĂ©, Nov 10 2014 LINKS FORMULA a(n) = 3-A000002(n+1) = A049705(n+1). EXAMPLE a(1)=1 hence first run must have length 2 and necessarily a(2)=1. Now second run must have also length 2 and therefore a(3)=a(4)=2. CROSSREFS Cf. A000002, A049705. Sequence in context: A164295 A035214 A071292 * A246144 A192763 A001285 Adjacent sequences:  A088566 A088567 A088568 * A088570 A088571 A088572 KEYWORD nonn AUTHOR Benoit Cloitre, Nov 17 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.