The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035214 2 followed by a run of n 1's. 5
 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Conjecture 4.5, p. 137. FORMULA a(n) = 2 if n is a triangular number, otherwise 1. Equals A010054(n) + 1. a(n) = floor((3-cos(Pi*sqrt(8*n+1)))/2). - Carl R. White, Mar 18 2006 MATHEMATICA Table[(SquaresR[1, 8*n + 1] + 2)/2, {n, 0, 100}] (* or *) Table[Floor[(3 - Cos[Pi*Sqrt[8*n + 1]])/2], {n, 0, 100}] (* G. C. Greubel, May 14 2017 *) PROG (PARI) for(n=0, 100, print1(floor((3-cos(Pi*sqrt(8*n+1)))/2), ", ")) \\ G. C. Greubel, May 14 2017 (PARI) a(n) = issquare(n<<3 + 1) + 1; \\ Kevin Ryde, Aug 03 2022 CROSSREFS Cf. A010054, A035253, A035254. Sequence in context: A342263 A109495 A164295 * A071292 A088569 A246144 Adjacent sequences: A035211 A035212 A035213 * A035215 A035216 A035217 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS Typo corrected by Neven Juric, Jan 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 16:20 EDT 2024. Contains 375836 sequences. (Running on oeis4.)