login
A035211
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.
23
1, 0, 0, 1, 2, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 2, 1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 1, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1
OFFSET
1,5
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 29. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
FORMULA
From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(29, d).
Multiplicative with a(29^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(29, p) = -1 (p is in A038902), and a(p^e) = e+1 if Kronecker(29, p) = 1 (p is in A191022).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log((sqrt(29)+5)/2)/sqrt(29) = 0.611766289562... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[29, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
PROG
(PARI) my(m = 29); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(29, d)); \\ Amiram Eldar, Nov 19 2023
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A002655 A064891 A278500 * A352558 A324735 A219495
KEYWORD
nonn,easy,mult
STATUS
approved