login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035208
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 26.
3
1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 2, 0, 1, 0, 0, 1, 2, 1, 2, 2, 0, 2, 2, 0, 3, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 1, 3, 0, 1, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 2, 1
OFFSET
1,5
LINKS
FORMULA
From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(26, d).
Multiplicative with a(p^e) = 1 if Kronecker(26, p) = 0 (p = 2 or 13), a(p^e) = (1+(-1)^e)/2 if Kronecker(26, p) = -1 (p is in A038900), and a(p^e) = e+1 if Kronecker(26, p) = 1 (p is in A038899 \ {2, 13}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(sqrt(26)+5)/sqrt(26) = 0.907012940471... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[26, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
PROG
(PARI) my(m = 26); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(26, d)); \\ Amiram Eldar, Nov 19 2023
CROSSREFS
Sequence in context: A261084 A035144 A157045 * A025881 A039804 A277537
KEYWORD
nonn,easy,mult
STATUS
approved