

A157045


Triangular table: number of partitions of n into exactly nk parts, each <= nk. Same as A157044 but with rows reversed.


1



1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 2, 0, 0, 1, 1, 2, 3, 4, 1, 0, 0, 1, 1, 2, 3, 5, 4, 1, 0, 0, 1, 1, 2, 3, 5, 6, 5, 0, 0, 0, 1, 1, 2, 3, 5, 7, 8, 4, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 9, 4, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 12, 11, 3, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 16, 11
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,13


COMMENTS

See A157044. Rows approach the partition numbers.


REFERENCES

George E. Andrews, The Theory of Partitions, AddisonWesley, Reading, Mass., 1976 (Theorem 1.5).


LINKS

Table of n, a(n) for n=1..101.


MATHEMATICA

Table[T[n1, nk, nk+2]T[n1, nk1, nk+2], {n, 1, 9}, {k, 1, n}] with T[n, a, b] as defined in A047993.


CROSSREFS

Cf. A000041, A157044, A157046, A047993
Sequence in context: A241069 A261084 A035144 * A035208 A025881 A039804
Adjacent sequences: A157042 A157043 A157044 * A157046 A157047 A157048


KEYWORD

nonn,tabl


AUTHOR

Wouter Meeussen, Feb 22 2009


STATUS

approved



