The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157044 Triangle read by rows: T(n,k) = number of partitions of n into exactly k parts, each <= k. 2
 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 1, 4, 3, 2, 1, 1, 0, 0, 1, 4, 5, 3, 2, 1, 1, 0, 0, 0, 5, 6, 5, 3, 2, 1, 1, 0, 0, 0, 4, 8, 7, 5, 3, 2, 1, 1, 0, 0, 0, 4, 9, 10, 7, 5, 3, 2, 1, 1, 0, 0, 0, 3, 11, 12, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 2, 11, 16, 14, 11, 7, 5 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS Also equals the number of partitions of n-1 into exactly k-1 parts, each <= k+1; equality reported by Franklin T. Adams-Watters. Comment from N. J. A. Sloane: This is a special case of the fact that the number of partitions of a-c into exactly b-1 parts none exceeding c equals the number of partitions of a-b into exactly c-1 parts none exceeding b. See Andrews reference. Row sums equal A064174; read backwards, rows approach the partition numbers A000041. REFERENCES George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976 (Theorem 1.5). LINKS EXAMPLE Table begins: 1 0,1 0,1,1 0,1,1,1 0,0,2,1,1 0,0,2,2,1,1 0,0,2,3,2,1,1 0,0,1,4,3,2,1,1 0,0,1,4,5,3,2,1,1 0,0,0,5,6,5,3,2,1,1 0,0,0,4,8,7,5,3,2,1,1 0,0,0,4,9,10,7,5,3,2,1,1 0,0,0,3,11,12,11,7,5,3,2,1,1 0,0,0,2,11,16,14,11,7,5,3,2,1,1 0,0,0,1,12,19,19,15,11,7,5,3,2,1,1 0,0,0,1,11,23,24,21,15,11,7,5,3,2,1,1 0,0,0,0,11,25,31,27,22,15,11,7,5,3,2,1,1 0,0,0,0,9,29,37,36,29,22,15,11,7,5,3,2,1,1 0,0,0,0,8,30,46,45,39,30,22,15,11,7,5,3,2,1,1 0,0,0,0,6,32,52,58,50,41,30,22,15,11,7,5,3,2,1,1 0,0,0,0,5,32,61,70,66,53,42,30,22,15,11,7,5,3,2,1,1 0,0,0,0,3,32,68,86,82,71,55,42,30,22,15,11,7,5,3,2,1,1 0,0,0,0,2,30,76,101,104,90,74,56,42,30,22,15,11,7,5,3,2,1,1 0,0,0,0,1,29,81,120,127,116,95,76,56,42,30,22,15,11,7,5,3,2,1,1 a(8,4)=4 since {2,2,2,2}, {3,2,2,1}, {3,3,1,1}, {4,2,1,1} are the partitions of 8 in exactly 4 parts <=4. MATHEMATICA Table[T[n-1, k-1, k+1]-T[n-1, k-2, k+1], {n, 20}, {k, n}] with T[n, a, b] as defined in A047993. <

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 17:07 EDT 2020. Contains 333089 sequences. (Running on oeis4.)