login
A025879
Expansion of 1/((1-x^5)*(1-x^6)*(1-x^10)).
6
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 5, 3, 3, 2, 2, 5, 5, 3, 3, 2, 7, 5, 5, 3, 3, 7, 7, 5, 5, 3, 9, 7, 7, 5, 5, 9, 9, 7, 7, 5, 12, 9, 9, 7, 7, 12, 12, 9, 9, 7, 15, 12, 12, 9, 9, 15, 15
OFFSET
0,11
COMMENTS
a(n) is the number of partitions of n into parts 5, 6, and 10. - Joerg Arndt, Nov 19 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1,0,0,0,1,-1,0,0,0,-1,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^6)(1-x^10)), {x, 0, 80}], x] (* or *)
LinearRecurrence[{0, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 3}, 80] (* Harvey P. Dale, Jun 14 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 80); Coefficients(R!( 1/((1-x^5)*(1-x^6)*(1-x^10)) )); // G. C. Greubel, Nov 18 2022
(SageMath)
def A025879_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^6)*(1-x^10)) ).list()
A025879_list(80) # G. C. Greubel, Nov 18 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved