|
|
A025881
|
|
Expansion of 1/((1-x^5)*(1-x^6)*(1-x^12)).
|
|
6
|
|
|
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 4, 1, 2, 2, 3, 4, 5, 2, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 10, 5, 6, 7, 8, 10, 11, 6, 7, 8, 10, 11, 13, 7, 8, 10, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,13
|
|
COMMENTS
|
a(n) is the number of partitions of n into parts 5, 6, and 12. - Joerg Arndt, Nov 19 2022
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1,0,0,0,0,-1,1,0,0,0,0,-1,-1,0,0,0,0,1).
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-x^5)(1-x^6)(1-x^12)), {x, 0, 80}], x] (* Harvey P. Dale, Nov 26 2020 *)
|
|
PROG
|
(Magma) R<x>:=PowerSeriesRing(Rationals(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^6)*(1-x^12)) )); // G. C. Greubel, Nov 18 2022
(SageMath)
def A025881_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^6)*(1-x^12)) ).list()
A025881_list(90) # G. C. Greubel, Nov 18 2022
|
|
CROSSREFS
|
Cf. A025876, A025877, A025878, A025879, A025880.
Sequence in context: A035144 A157045 A035208 * A039804 A277537 A323179
Adjacent sequences: A025878 A025879 A025880 * A025882 A025883 A025884
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|