login
A035170
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -20.
29
1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 0, 2, 0, 2, 2, 1, 0, 3, 0, 1, 4, 0, 2, 2, 1, 0, 4, 2, 2, 2, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 2, 4, 2, 0, 3, 2, 2, 2, 3, 1, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 2, 0, 6, 1, 0, 0, 2, 0, 4, 2, 0, 3, 0, 0, 2, 0, 0, 0, 0, 1, 5, 2, 2, 4, 0, 2, 4, 0, 2, 3, 0, 2, 0, 2, 0, 2, 0, 3, 0, 1, 2, 0, 2, 0, 4
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -20. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 253.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Multiplicative with a(2^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), a(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20). - Michael Somos, Sep 10 2005
G.f.: Sum_{k>0} x^k * (1 + x^(2*k)) * (1 + x^(6*k)) / (1 + x^(10*k)). - Michael Somos, Sep 10 2005
a(2*n) = a(5*n) = a(n), a(20*n + 11) = a(20*n + 13) = a(20*n + 17) = a(20*n + 19) = 0.
Moebius transform is period 20 sequence [ 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...]. - Michael Somos, Oct 21 2006
Expansion of -1 + (phi(q) * phi(q^5) + phi(q^2) * phi(q^10) + 4 * q^3 * psi(q^4)* psi(q^20)) / 2 in powers of q where phi(), psi() are Ramanujan theta functions.
2*a(n) = A028586(n) + A033718(n) if n>0. - Michael Somos, Oct 21 2006
a(n) = A124233(n) unless n=0. a(n) = |A111949(n)|. a(2*n + 1) = A129390(n). a(4*n + 3) = 2 * A033764(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - Amiram Eldar, Oct 11 2022
EXAMPLE
q + q^2 + 2*q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + q^10 + ...
MATHEMATICA
QP = QPochhammer; s = (1/q) * (QP[q^2]*QP[q^4]*QP[q^5]*(QP[q^10] / (QP[q]* QP[q^20]))-1) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 04 2015 *)
a[n_] := If[n < 0, 0, DivisorSum[ n, KroneckerSymbol[-20, #] &]]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Dec 12 2017 *)
PROG
(PARI) direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker( -20, d)))} \\ Michael Somos, Sep 10 2005
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -20, p) * X) )[n])} \\ Michael Somos, Sep 10 2005
(PARI) {a(n) = if( n<1, 0, qfrep([1, 0; 0, 5], n)[n] + qfrep([2, 1; 1, 3], n)[n])} \\ Michael Somos, Oct 21 2006
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A029313 A144001 A124233 * A111949 A143323 A368542
KEYWORD
nonn,mult
STATUS
approved