login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124233
Expansion of psi(q) * phi(-q^10) * chi(-q^5) / chi(-q^2) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
2
1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 0, 2, 0, 2, 2, 1, 0, 3, 0, 1, 4, 0, 2, 2, 1, 0, 4, 2, 2, 2, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 2, 4, 2, 0, 3, 2, 2, 2, 3, 1, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 2, 0, 6, 1, 0, 0, 2, 0, 4, 2, 0, 3, 0, 0, 2, 0, 0, 0, 0, 1, 5, 2, 2, 4, 0, 2
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 38 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2) * eta(q^4) * eta(q^5) * eta(q^10) / (eta(q) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, 1, -1, 1, 0, 0, -1, 1, 0, 1, -2, ...].
Moebius transform is period 20 sequence [ 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), a(p^e) = (1 + (-1)^e) / 2 if p == 11, 13, 17, 19 (mod 20).
G.f.: 1 + Sum_{k>0} x^k * (1 + x^(2*k)) * (1 + x^(6*k)) / (1 + x^(10*k)).
a(2*n) = a(5*n) = a(n), a(20*n + 11) = a(20*n + 13) = a(20*n + 17) = a(20*n + 19) = 0.
a(n) = A035170(n) unless n=0. a(2*n + 1) = A129390(n). a(4*n + 3) = 2 * A033764(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - Amiram Eldar, Dec 22 2023
EXAMPLE
G.f. = 1 + q + q^2 + 2*q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -20, #] &]]; (* Michael Somos, Jul 09 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^4] QPochhammer[ q^5] QPochhammer[ q^10] / (QPochhammer[ q] QPochhammer[ q^20]), {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -20, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^10 + A) / eta(x + A) / eta(x^20 + A), n))};
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Oct 21 2006
STATUS
approved