login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033764
Product t2(q^d); d | 5, where t2 = theta2(q)/(2*q^(1/4)).
5
1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 0, 3, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 2, 0, 0, 3, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 2, 3, 0, 1, 0, 1, 1, 0, 1, 0, 3, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 0, 2, 1, 0, 3, 0, 0, 2, 0, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
0,7
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Also the number of positive odd solutions to equation x^2 + 5*y^2 = 8*n + 6. - Seiichi Manyama, May 28 2017
LINKS
A. Berkovich and H. Yesilyurt, Ramanujan's Identities and Representation of Integers by Certain Binary and Quaternary Quadratic Forms, arXiv:math/0611300 [math.NT], 2006-2007, see Equation (3.19).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(q) * psi(q^5) where psi() is a Ramanujan theta function.
Expansion of q^(-3/4) * eta(q^2)^2 * eta(q^10)^2 / (eta(q) * eta(q^5)) in powers of q.
Euler transform of period 10 sequence [ 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, ...]. - Michael Somos, Mar 21 2008
G.f.: Sum_{k} (x^(3*k) + x^(7*k+1)) / (1 - x^(20*k+5)) = Sum_{k} (x^k + x^(9*k+6)) / (1 - x^(20*k+15)).
EXAMPLE
q^3 + q^7 + q^15 + q^23 + 2*q^27 + q^35 + q^43 + q^47 + 3*q^63 + q^67 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^2*(QP[q^10]^2/(QP[q]*QP[q^5])) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^10 + A)^2 / eta(x + A) / eta(x^5 + A), n))} /* Michael Somos, Mar 21 2008 */
CROSSREFS
Sequence in context: A379129 A227836 A364042 * A033784 A226206 A350682
KEYWORD
nonn
STATUS
approved