The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033761 Product t2(q^d); d | 2, where t2 = theta2(q)/(2*q^(1/4)). 22
 1, 1, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 3, 1, 0, 2, 1, 1, 1, 0, 1, 3, 1, 2, 0, 0, 1, 2, 1, 0, 3, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 3, 0, 1, 3, 0, 0, 2, 1, 0, 0, 1, 2, 4, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 2, 1, 0, 3, 0, 1, 4, 0, 1, 0, 1, 0, 2, 1, 1, 2, 0, 0, 2, 2, 1, 3, 0, 0, 2, 2, 1, 0, 2, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Also the number of representations of n as the sum of a triangular number and twice a triangular number. - James A. Sellers, Dec 21 2005 Also the number of positive odd solutions to equation x^2 + 2*y^2 = 8*n + 3. - Seiichi Manyama, May 28 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 R. P. Agarwal, Lambert series and Ramanujan, Prod. Indian Acad. Sci. (Math. Sci.), v. 103, n. 3, 1993, pp. 269-293 (see p. 285). Iana I. Anguelova, The two bosonizations of the CKP hierarchy: overview and character identities, arXiv:1708.04992 [math-ph], 2017. M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Euler transform of period 4 sequence [1, 0, 1, -2, ...]. - Vladeta Jovovic, Sep 14 2004 Expansion of psi(q) * psi(q^2) in powers of q where psi() is a Ramanujan theta function. Expansion of q^(-3/8) * eta(q^2) * eta^2(q^4) / eta(q) in powers of q. - Michael Somos, Jul 05 2006 Expansion of q^(-3/4) * (theta_2(q) * theta_2(q^2)) / 4 in powers of q^2. - Michael Somos, Jul 05 2006 Given g.f. A(x), then B(x) = x^3 * A(x^8) satisfies 0 = f(B(x), B(x^2), B(x^3), B(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^2 + 3*u2^2*u3^4 - 4*u1*u2*u3*u6 * (u2^2 + 3*u6^2). - Michael Somos, Jul 05 2006 a(n) = A002325(8*n+3)/2. [Hirschhorn] - R. J. Mathar, Mar 23 2011 a(n) = A027414(8*n + 3). - Michael Somos, Nov 16 2011 G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082564. - Michael Somos, Jan 31 2015 From Peter Bala, Jan 07 2021: (Start) G.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(8*n + 3)). See Agarwal, p. 285, equation 6.19. A(x^2) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(8*n + 3)). Cf. A121444. (End) A(q^2) = (1/2)*Sum_{k >= 0} q^k/(1 + q^(4*k+3)) + (1/2)*Sum_{k >= 0} q^(3*k)/(1 + q^(4*k+1)) - set z = 1 and replace q with q^2 in Anguelova, equation 3.35. - Peter Bala, Mar 03 2021 EXAMPLE G.f. = 1 + x + x^2 + 2*x^3 + x^5 + 2*x^6 + x^7 + x^8 + x^9 + x^10 + 3*x^12 + ... G.f. = q^3 + q^11 + q^19 + 2*q^27 + q^43 + 2*q^51 + q^59 + q^67 + q^75 + q^83 + ... MAPLE sigmamr := proc(n, m, r) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d, m) = r then a := a+1 ; end if; end do: a; end proc: A002325 := proc(n) sigmamr(n, 8, 1)+sigmamr(n, 8, 3)-sigmamr(n, 8, 5)-sigmamr(n, 8, 7) ; end proc: A033761 := proc(n) A002325(8*n+3)/2 ; end proc: seq(A033761(n), n=0..90) ; # R. J. Mathar, Mar 23 2011 MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^2] / 4, {q, 0, 2 n + 3/4}]; (* Michael Somos, Nov 16 2011 *) QP = QPochhammer; s = QP[q^2]*(QP[q^4]^2/QP[q]) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 / eta(x + A), n))}; /* Michael Somos, Jul 05 2006 */ (Magma) A := Basis( ModularForms( Gamma1(32), 1), 840); A[4] + A[12]; /* Michael Somos, Jan 31 2015 */ CROSSREFS Cf. A027414, A097723, A033761-A033807, A082564. Sequence in context: A117997 A079684 A358138 * A033805 A033797 A033793 Adjacent sequences: A033758 A033759 A033760 * A033762 A033763 A033764 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS More terms from Vladeta Jovovic, Sep 14 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 02:11 EDT 2024. Contains 373468 sequences. (Running on oeis4.)