The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027414 G.f. for Moebius transform is x * (1 + x) / (1 + x^4). 1
 1, 2, 1, 2, 0, 1, 1, 2, 2, 2, 1, 1, 0, 1, 0, 2, 2, 3, 1, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 4, 0, 3, 0, 1, 0, 2, 2, 0, 1, 1, 0, 1, 1, 1, 2, 4, 2, 2, 0, 2, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 4, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 4, 1, 0, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 1, 2, 3, 3, 4, 0, 2, 1, 2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS N. J. A. Sloane, Transforms FORMULA Moebius transform is period 8 sequence [1, 1, 0, 0, -1, -1, 0, 0, ...]. - Michael Somos, Sep 20 2005 G.f.: Sum_{k>0} x^k * (1 + x^k) / (1 + x^(4*k)). - Michael Somos, Sep 20 2005 a(8*n + 5) = 0. a(8*n + 3) = A033761(n). - Michael Somos, Nov 16 2011 EXAMPLE x + 2*x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + x^12 + ... MATHEMATICA a[ n_] := If[ n < 1, 0, Sum[ {1, 1, 0, 0, -1, -1, 0, 0} [[ Mod[d, 8, 1]]], {d, Divisors @ n}]] (* Michael Somos, Nov 16 2011 *) PROG (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -4, (d-1)%8\2 + 1)))} /* Michael Somos, Sep 20 2005 */ CROSSREFS Sequence in context: A337253 A127173 A035160 * A140083 A277729 A057985 Adjacent sequences:  A027411 A027412 A027413 * A027415 A027416 A027417 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 21:49 EST 2022. Contains 350565 sequences. (Running on oeis4.)