login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027414 G.f. for Moebius transform is x * (1 + x) / (1 + x^4). 1
1, 2, 1, 2, 0, 1, 1, 2, 2, 2, 1, 1, 0, 1, 0, 2, 2, 3, 1, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 4, 0, 3, 0, 1, 0, 2, 2, 0, 1, 1, 0, 1, 1, 1, 2, 4, 2, 2, 0, 2, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 4, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 4, 1, 0, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 1, 2, 3, 3, 4, 0, 2, 1, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..105.

N. J. A. Sloane, Transforms

FORMULA

Moebius transform is period 8 sequence [1, 1, 0, 0, -1, -1, 0, 0, ...]. - Michael Somos, Sep 20 2005

G.f.: Sum_{k>0} x^k * (1 + x^k) / (1 + x^(4*k)). - Michael Somos, Sep 20 2005

a(8*n + 5) = 0. a(8*n + 3) = A033761(n). - Michael Somos, Nov 16 2011

EXAMPLE

x + 2*x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + x^12 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, Sum[ {1, 1, 0, 0, -1, -1, 0, 0} [[ Mod[d, 8, 1]]], {d, Divisors @ n}]] (* Michael Somos, Nov 16 2011 *)

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -4, (d-1)%8\2 + 1)))} /* Michael Somos, Sep 20 2005 */

CROSSREFS

Sequence in context: A171099 A127173 A035160 * A140083 A277729 A057985

Adjacent sequences:  A027411 A027412 A027413 * A027415 A027416 A027417

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 24 22:31 EDT 2017. Contains 292441 sequences.