login
A353328
Number of divisors d of n for which A332823(d) is positive (+1).
9
0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 1, 1, 2, 0, 3, 1, 2, 1, 2, 1, 3, 0, 1, 1, 3, 1, 2, 0, 2, 2, 2, 1, 3, 1, 2, 1, 2, 0, 3, 2, 2, 1, 1, 1, 4, 0, 2, 2, 2, 1, 3, 1, 2, 1, 3, 0, 4, 1, 1, 2, 2, 1, 2, 0, 4, 1, 2, 1, 4, 2, 1, 1, 3, 0, 4, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 0, 3, 1, 2, 2
OFFSET
1,10
COMMENTS
Number of divisors of n such that A048673(d) == +1 (mod 3).
FORMULA
a(n) = Sum_{d|n} [A332823(d) > 0], where [ ] is the Iverson bracket, giving 1 only if A332823 computed for the divisor d is strictly positive, and 0 otherwise.
a(n) = A353354(n) + A353329(n).
a(n) = A353351(n) - A353329(n).
a(n) = A353329(A003961(n)).
PROG
(PARI)
A332823(n) = { my(f = factor(n), u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u, -1, u); };
A353328(n) = sumdiv(n, d, (A332823(d)>0));
CROSSREFS
Cf. A353355 [a(n) == A353329(n)], A353356 [a(n) > A353329(n)], A353357 [a(n) < A353329(n)].
Sequence in context: A127173 A362867 A035160 * A027414 A140083 A277729
KEYWORD
nonn
AUTHOR
Antti Karttunen and Peter Munn, Apr 16 2022
STATUS
approved