OFFSET
1,3
COMMENTS
See various formulas in A353324, which is essentially the same as this sequence (after dropping the initial term along with zero coefficients).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..1000
EXAMPLE
G.f.: A(x) = x + x^3 + 24*x^5 + 95*x^7 + 2699*x^9 + 15803*x^11 + 426524*x^13 + 3152930*x^15 + 78893000*x^17 + 687247207*x^19 + ...
where Series_Reversion(A(x)) = x*(1 - x^2)^8*(1 + x^2)*(1 + 6*x^2 + x^4) = x - x^3 - 21*x^5 + 85*x^7 - 134*x^9 + 70*x^11 + 70*x^13 - 134*x^15 + 85*x^17 - 21*x^19 - x^21 + x^23.
Related series.
(1 + A(x))^8 = 1 + 8*x + 28*x^2 + 64*x^3 + 126*x^4 + 416*x^5 + 1680*x^6 + 5248*x^7 + 13973*x^8 + 53008*x^9 + ... + A353326(n)*x^n + ...
where 1 + A(x) is the g.f. of A353324.
PROG
(PARI) {a(n) = my(A = serreverse(x*(1 - x^2)^8*(1 + x^2)*(1 + 6*x^2 + x^4) +x*O(x^(2*n)) )); polcoeff(A, 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 14 2022
STATUS
approved