login
A353326
Series reversion of x*(1 - x^2)^8*(1 + x^2)*(1 + 6*x^2 + x^4).
3
1, 1, 24, 95, 2699, 15803, 426524, 3152930, 78893000, 687247207, 16006168608, 157792378176, 3453454403373, 37490799893638, 778751573489764, 9127308648236072, 181560354411764773, 2263213799047242089, 43447241664660806352, 569330835658843131787
OFFSET
1,3
COMMENTS
See various formulas in A353324, which is essentially the same as this sequence (after dropping the initial term along with zero coefficients).
LINKS
EXAMPLE
G.f.: A(x) = x + x^3 + 24*x^5 + 95*x^7 + 2699*x^9 + 15803*x^11 + 426524*x^13 + 3152930*x^15 + 78893000*x^17 + 687247207*x^19 + ...
where Series_Reversion(A(x)) = x*(1 - x^2)^8*(1 + x^2)*(1 + 6*x^2 + x^4) = x - x^3 - 21*x^5 + 85*x^7 - 134*x^9 + 70*x^11 + 70*x^13 - 134*x^15 + 85*x^17 - 21*x^19 - x^21 + x^23.
Related series.
(1 + A(x))^8 = 1 + 8*x + 28*x^2 + 64*x^3 + 126*x^4 + 416*x^5 + 1680*x^6 + 5248*x^7 + 13973*x^8 + 53008*x^9 + ... + A353326(n)*x^n + ...
where 1 + A(x) is the g.f. of A353324.
PROG
(PARI) {a(n) = my(A = serreverse(x*(1 - x^2)^8*(1 + x^2)*(1 + 6*x^2 + x^4) +x*O(x^(2*n)) )); polcoeff(A, 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A076799 A297540 A365191 * A055671 A090214 A283446
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 14 2022
STATUS
approved