login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076799
Greedy powers of (e/3): Sum_{n>=1} (e/3)^a(n) = 1.
0
1, 24, 92, 140, 171, 199, 226, 251, 277, 320, 363, 391, 425, 449, 474, 500, 524, 548, 575, 632, 673, 777, 801, 836, 861, 903, 932, 959, 983, 1011, 1054, 1087, 1113, 1148, 1176, 1228, 1261, 1286, 1316, 1348, 1394, 1427, 1452, 1480, 1510, 1536, 1571, 1600
OFFSET
1,2
COMMENTS
The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series Sum_{k=1..n} x^a(k) to exceed unity.
FORMULA
a(n) = Sum_{k=1..n} floor(g_k) where g_1=1, g_{n+1}=log_x(x^frac(g_n) - x) (n>0) at x=(e/3) and frac(y) = y - floor(y).
EXAMPLE
a(3)=92 since (e/3) + (e/3)^24 + (e/3)^92 < 1 and (e/3) +(e/3)^24 + (e/3)^91 > 1; since the power 91 makes the sum > 1, then 92 is the 4th greedy power of (e/3).
MAPLE
Digits := 1100: summe := 0.0: p := evalf(exp(1)/3.): pexp := p: a := []: for i from 1 to 3000 do: if summe + pexp < 1 then a := [op(a), i]: summe := summe + pexp: fi: pexp := pexp * p: od: a;
PROG
(PARI) default(realprecision, 99); s=1; Le3=1-log(3); for(i=1, 50, print1(a=if(i>1, log(s)\Le3, 1)", "); s-=exp(a*Le3)) \\ M. F. Hasler, Sep 28 2009
CROSSREFS
Sequence in context: A256718 A233637 A179962 * A297540 A365191 A353326
KEYWORD
easy,nonn
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
EXTENSIONS
Some terms corrected (replaced 67,3 with 673 and 153,6 with 1536) by M. F. Hasler, Sep 28 2009
STATUS
approved