login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076799 Greedy powers of (e/3): Sum_{n>=1} (e/3)^a(n) = 1. 0
1, 24, 92, 140, 171, 199, 226, 251, 277, 320, 363, 391, 425, 449, 474, 500, 524, 548, 575, 632, 673, 777, 801, 836, 861, 903, 932, 959, 983, 1011, 1054, 1087, 1113, 1148, 1176, 1228, 1261, 1286, 1316, 1348, 1394, 1427, 1452, 1480, 1510, 1536, 1571, 1600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series Sum_{k=1..n} x^a(k) to exceed unity.

LINKS

Table of n, a(n) for n=1..48.

FORMULA

a(n) = Sum_{k=1..n} floor(g_k) where g_1=1, g_{n+1}=log_x(x^frac(g_n) - x) (n>0) at x=(e/3) and frac(y) = y - floor(y).

EXAMPLE

a(3)=92 since (e/3) + (e/3)^24 + (e/3)^92 < 1 and (e/3) +(e/3)^24 + (e/3)^91 > 1; since the power 91 makes the sum > 1, then 92 is the 4th greedy power of (e/3).

MAPLE

Digits := 1100: summe := 0.0: p := evalf(exp(1)/3.): pexp := p: a := []: for i from 1 to 3000 do: if summe + pexp < 1 then a := [op(a), i]: summe := summe + pexp: fi: pexp := pexp * p: od: a;

PROG

(PARI) default(realprecision, 99); s=1; Le3=1-log(3); for(i=1, 50, print1(a=if(i>1, log(s)\Le3, 1)", "); s-=exp(a*Le3)) \\ M. F. Hasler, Sep 28 2009

CROSSREFS

Cf. A077468 - A077475.

Sequence in context: A256718 A233637 A179962 * A297540 A353326 A055671

Adjacent sequences:  A076796 A076797 A076798 * A076800 A076801 A076802

KEYWORD

easy,nonn

AUTHOR

Ulrich Schimke (ulrschimke(AT)aol.com)

EXTENSIONS

Some terms corrected (replaced 67,3 with 673 and 153,6 with 1536) by M. F. Hasler, Sep 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 3 06:54 EDT 2022. Contains 355031 sequences. (Running on oeis4.)