login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076797
Greedy powers of (Pi/5): Sum_{n>=1} (Pi/5)^a(n) = 1.
0
1, 3, 5, 8, 15, 17, 20, 25, 28, 30, 32, 35, 43, 54, 58, 65, 67, 70, 73, 76, 82, 86, 89, 94, 97, 100, 107, 112, 119, 121, 124, 130, 133, 135, 137, 141, 143, 146, 153, 156, 163, 166, 169, 175, 177, 180, 185, 195, 199, 204, 210, 212, 217, 220, 226, 229, 234, 239
OFFSET
1,2
COMMENTS
The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series Sum_{k=1..n} x^a(k) to exceed unity.
FORMULA
a(n) = Sum_{k=1..n} floor(g_k) where g_1=1, g_{n+1} = log_x(x^frac(g_n) - x) (n > 0) at x = Pi/5 and frac(y) = y - floor(y).
EXAMPLE
Pi/5 + (Pi/5)^3 + (Pi/5)^5 < 1 and Pi/5 + (Pi/5)^3 + (Pi/5)^4 > 1; since the power 4 makes the sum > 1, 5 is the 3rd greedy power of (Pi/5), so a(3)=5.
MAPLE
Digits := 400: summe := 0.0: p := evalf(Pi / 5.): pexp := p: a := []: for i from 1 to 800 do: if summe + pexp < 1 then a := [op(a), i]: summe := summe + pexp: fi: pexp := pexp * p: od: a;
CROSSREFS
Sequence in context: A095290 A080999 A077579 * A290630 A359851 A193147
KEYWORD
easy,nonn
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
EXTENSIONS
Corrected by T. D. Noe, Nov 02 2006
STATUS
approved